College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The wheel and axle have forces applies tangentially as shown in the figure. There is also a frictional torque of 0.02 Nxm on the wheel, once the wheel starts moving. The radius of the axel is 20 cm and the radius of the wheelis 60 cm and F1 = 2.4 N, F2 = 3.0 N and F3 = 1.2 N. a. Calculate the net torque on the moving wheel due to the applied forces F1 F2 and F3. b. What direction of rotation would the applied forces cause? Explain. c. What is the direction of frictional torque? Explain. d. Calculate the net torque on the wheel and axle.arrow_forwardA wheel with thin spokes can be considered a hoop, where I=mr. A bicycle wheel has a mass of .35 kg with a radius of .30 m and is spinning at 25 rad/s in the positive direction. Brakes apply a force of friction of 15 N at the rim. We will consider the rim of the wheel to be on the very outside of the wheel. (Remember significant digits.) a.) What is the direction of the torque provided by the brakes (positive or negative) b.) What is the magnitude of the torque applied by the brakes? Nm c.) What is the moment of angular inertia of the wheel? kgm2 d.) What is the angular acceleration of the wheel? rad/s? e.) How far does the wheel travel (in radians) before coming to rest? rad f.) How long does this take? s g.) With faulty brakes, only 8 N can be applied. How long would it take to stop the wheel under these conditions? s MacBook Proarrow_forwardThe radius of a park merry-go-round is 2.5 m. To start it rotating, you wrap a rope around it and pull with a force of 260 N for 20 s. During this time, the merry-go-round makes one complete rotation. (a) Find the angular acceleration of the merry-go-round. rad/s2 (b) What is the magnitude of the torque exerted by the rope on the merry-go-round? N-m (c) What is the moment of inertia of the merry-go-round? kg-m2 eBookarrow_forward
- A circular disk with a radius of 0.37 m is subject to 2 tangentially applied forces. The disc is fixed such that it will rotate about its center. Both forces produce a torque in the same direction. F1 = 4.7 N applied at the outer edge of the disc. F2 = 3.2 N applied at a distance of 0.3 from the center of the disc. What is the net torque on the disc?arrow_forwardA circular disk with a radius of 0.42 m is subject to 2 tangentially applied forces. The disc is fixed such that it will rotate about its center. Both forces produce a torque in the same direction. F1 = 4.4 N applied at the outer edge of the disc. F2 = 3 N applied at a distance of 0.2 from the center of the disc. What is the net torque on the disc?arrow_forwardA toy Ferris wheel that is at rest has a radius of 20.0 cm. A perpendicular force of 1.5 N is applied to the outer most part of the Ferris wheel. The toy Ferris when has a rotational inertia of 0.050 kg m2 . a) What is net Torque applied to the Ferris wheel? b) What is the angular acceleration of the Ferris wheel? k) If the Ferris wheel maintains this angular acceleration for 3.0 seconds, what will its final angular velocity be? d) What will be its rotational Kinetic Energy after 3.0 seconds?arrow_forward
- A counterweight of mass m = 3.60 kg is attached to a light cord that is wound around a pulley as shown in the figure below. The pulley is a thin hoop of radius R = 7.00 cm and mass M = 1.50 kg. The spokes have negligible mass. M m (a) What is the net torque on the system about the axle of the pulley? magnitude 2.058 x N.m direction to the right along the axis of rotation (b) When the counterweight has a speed v, the pulley has an angular speed = v/R. Determine the magnitude of the total angular momentum of the system about the axle of the pulley. (0.357 kg. m)v (c) Find the magnitude of the acceleration of the counterweight. 5.76 x m/s²arrow_forwardA student holds a bike wheel and starts it spinning with an initial angular speed of 9.0 rotations per second. The wheel is subject to some friction, so it gradually slows down. In the 10.0 s period following the inital spin, the bike wheel undergoes 77.5 complete rotations. Assuming the frictional torque remains constant, how much more time At, will it take the bike wheel to come to a complete stop? Ats = %3D Sarrow_forwardT m A 25.0 kg mass is hung from a rope that is passed over a pulley and held by a man standing on a ramp. The pulley can be treated as a solid disk with a mass of 10.0 kg that has a radius of 0.400 m. The man pulls the rope so that the pulley rotates from rest through an angular displacement of 15.0 rad in 2.00s. A. What is the angular acceleration of the disk? B. What is the tension of the rope as it pulls up on the box? C. What is the force applied by the man on the rope as he pulls the box upward?arrow_forward
- a.) A tension force, T, of magnitude 5.0 N is applied to the end of a bar at a distance r = 1.5 m from the axis of rotation O (represented by the black dot). The angle between the force and the distance vector, θ=25o. Calculate the magnitude and direction of the torque vector. b.) In the previous problem, let’s make some changes. The bar is now a different length and reoriented within 3-D space such that the r is a vector that has components (3,2,0) in the xyz coordinate frame, and F is a vector with components (4,5,0). What is the torque exerted on the rigid body about a pivot located at the origin? Express your answer in i, j, k, components. Assume all distances are represented in meters and forces in newtons.arrow_forwardA counterweight of mass m = 3.60 kg is attached to a light cord that is wound around a pulley as shown in the figure below. The pulley is a thin hoop of radius R = 7.00 cm and mass M = 3.00 kg. The spokes have negligible mass. (a) What is the net torque on the system about the axle of the pulley? V N.m to the right along the axis of rotation v magnitude 2.4695 direction (b) When the counterweight has a speed v, the pulley has an angular speed w = v/R. Determine the magnitude of the total angular momentum of the system about the axle of the pulley. (3.705 Note that your numerical answer is multiplied by the symbol v in the answer box. kg • m)v (c) Using your result from (b) and 7 = L/dt, calculate the acceleration of the counterweight. (Enter the magnitude of the acceleration.) 6.925 The expression for the angular momentum in part (b) has a factor of v. How do you determine dL/dt, from this expression? m/s2arrow_forwardA solid 0.6150 kg ball rolls without slipping down a track toward a vertical loop of radius ?=0.7350 m. What minimum translational speed ?minvmin must the ball have when it is a height H=1.111 m above the bottom of the loop in order to complete the loop without falling off the track? Assume that the radius of the ball itself is much smaller than the loop radius ?R. Use g=9.810 m/s^2 for the acceleration due to gravity.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON