Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
A large tank filled with a mixture of methane and air at 102 kPa and 25 ⁰C is connected to another large tank filled with a different composition of methane and air also at 102 kPa and 25 ⁰C. The connection between the tanks is a tube with an inner diameter of 50 mm and length of 150 mm. The concentration of methane in one tank is 90 mole percent and in the other, 5 mole percent.
DETERMINE: molar density of methane (kmol/m³)?
CHOICES:
0.4875
4.1695
0.4010
0.04115
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- There is an unglazed porcelain disc with a thickness of 0.016 ft and a pore diameter of 7.874 x 10-6 in. Pure oxygen gas is passed through the pores at an initial absolute pressure of 2666.45 Pa at 212°F. Oxygen passes with a molar flux density of 0.093 cm3/cm2.s (at 2666.45 Pa and 212 °F). The oxygen pressure on the other side of the disk is estimated to be negligible. Determine the ton/min passing from gaseous Oxygen at 298 K and 10 mmHg abs.arrow_forwardCalculate the pressure to which this volume of air must be compressed in order to fit into the air tank. Write your answer in atmospheres. Round your answer to 3 significant digits and show decimal.arrow_forwardA cylindrical pressure vessel of diameter 50 cm and height 1.2 m is used to store a gas mixture consisting of 75 mole % nitrogen and 25 mole % carbon dioxide at 30 bar and 20°C. i) Find the mass of gas present. ii) Find the density of the gas mixture under these conditions. iii) Use the Gibbs Phase Rule to find the number of degrees of freedom in the system.arrow_forward
- 10. A container is separated into two halves by a membrane. Your lab partner assistant, Thurmond, is supposed to place a MgCl2 solution on side 1 and a NaCl solution on side 2. He is then supposed to measure the rate of water movement across the membrane. Unfortunately, Thurmond is not very good about keeping complete lab notes and he has forgotten to write down some data and calculations. Using your knowledge of osmosis, complete the following table. Temperature is 15°C and the hydraulic conductivity for the membrane is 0.4 ml/atm sec. MgCl2 Concentration on Side 1 NaCl Concentration on Side 2 80 mM Osmolarity on Side 1 Osmolarity on Side 2 Difference in osmotic pressure 60 mosM across the membrane Jy 0.95 ml/sec Reflection coefficient (ơ) Direction of water movementarrow_forwardIf you know pure nitrogen gas has a pressure of 1 atm, how many intensive degrees of freedom does your system have? choose the correct one. 1) 1 , 2) 0 , 3) 3, 4) 2arrow_forwardExperiment: determination of molar volume of gas at STParrow_forward
- The density of carbon tetrachloride (CC14) is used as a reference density at a specific condition to measure the specific gravity of the liquid substance Select one: O True O Falsearrow_forwardAt a certain temperature and pressure, a 1.00 mol sample of argon gas is pumped into a 22.4 L rigid box that already contains 1.00 mol of nitrogen gas. We would expect the argon gas to: Group of answer choices decrease the total gas pressure in the box by a factor of 2 occupy the entire 22.4 L volume of the box. increase the total gas pressure in the box by a factor of less than 2. spread out into the box, but the actual volume occupied but he gas cannot be known without pressure information. occupy only 11.2 L of the box.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The