A large tank feeds a straight pipe that delivers water to a turbine, and then exits to atmosphere, as shown in Figure P8.50. The friction factor f = 0.01, the length L = 100 m, the diameter of the pipe D = 0.1 m, the loss coefficients K1 = K2 = 1, the water density ρ = 1000 kg/m3 , the water viscosity µ = 15 × 10−3 N.s/m2 , the bulk velocity in the pipe V = 2 m/s, and the turbine develops 500 W. (a) Do you expect the flow in the pipe to be turbulent or laminar? (b) Find the height H.
A large tank feeds a straight pipe that delivers water to a turbine, and then exits to atmosphere, as shown in Figure P8.50. The friction factor f = 0.01, the length L = 100 m, the diameter of the pipe D = 0.1 m, the loss coefficients K1 = K2 = 1, the water density ρ = 1000 kg/m3 , the water viscosity µ = 15 × 10−3 N.s/m2 , the bulk velocity in the pipe V = 2 m/s, and the turbine develops 500 W. (a) Do you expect the flow in the pipe to be turbulent or laminar? (b) Find the height H.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Concept explainers
Question
A large tank feeds a straight pipe that delivers water to a turbine, and then exits to atmosphere, as shown in Figure P8.50. The friction factor f = 0.01, the length L = 100 m, the diameter of the pipe D = 0.1 m, the loss coefficients K1 = K2 = 1, the water density ρ = 1000 kg/m3 , the water viscosity µ = 15 × 10−3 N.s/m2 , the bulk velocity in the pipe V = 2 m/s, and the turbine develops 500 W.
(a) Do you expect the flow in the pipe to be turbulent or laminar?
(b) Find the height H.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning