a large box of mass 11.4 kg sits on a ramp that makes an angle of 30.1 degrees with the horizontal. The surface of the ramp is rough and the oefficients of static and kinetic friction are given as 0.56 and 0,38, respectively. We exert a force up the ramp (parallel to the ramp surface) so hat the box does not move. Calculate the maximum and the minimum magnitude of the force we can exert so that the box does not move. Enter the difference between the maximum and the minimum force values here: Fmax-Fmin (in Newtons). On your paper, show all the forces on free-body diagrams, clearly show your work, your derivation and calculations. Make sure to include your physics-based reasoning.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Topic Video
Question
A large box of mass 11.4 kg sits on a ramp that makes an angle of 30.1 degrees with the horizontal. The surface of the ramp is rough and the
coefficients of static and kinetic friction are given as 0.56 and 0,38, respectively. We exert a force up the ramp (parallel to the ramp surface) so
that the box does not move.
Calculate the maximum and the minimum magnitude of the force we can exert so that the box does not move.
Enter the difference between the maximum and the minimum force values here: Fmax-Fmin (in Newtons). On your paper, show all the forces
on free-body diagrams, clearly show your work, your derivation and calculations. Make sure to include your physics-based reasoning.
Transcribed Image Text:A large box of mass 11.4 kg sits on a ramp that makes an angle of 30.1 degrees with the horizontal. The surface of the ramp is rough and the coefficients of static and kinetic friction are given as 0.56 and 0,38, respectively. We exert a force up the ramp (parallel to the ramp surface) so that the box does not move. Calculate the maximum and the minimum magnitude of the force we can exert so that the box does not move. Enter the difference between the maximum and the minimum force values here: Fmax-Fmin (in Newtons). On your paper, show all the forces on free-body diagrams, clearly show your work, your derivation and calculations. Make sure to include your physics-based reasoning.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Second law of motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON