
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A juggler throws a bowling pin straight up with an initial speed of 8 m/s from an initial height of 3.9 m. How much time elapses until the bowling pin returns to the same initial height
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A runner and a cyclist compete in a race over a straight course 20 km long. The runner runs at a steady speed of 10 m/s toward the finish line. The cyclist zips at a speed of 23 m/s toward the finish line for 12 km but upon seeing that he is already far ahead of the runner, he decides to stop and wait for the runner to catch up to him. The runner eventually reaches the cyclist and continues moving toward the finish line. The cyclist waits for a while after the runner passes and then cycles toward the finish line again at 23m/s. Both the cyclist and the runner cross the finish line in the exact same instant. Assume both of them, when moving, move steadily at their respective speeds. (a) How far is the runner from the finish line when the cyclist resumes the race? (b) For how long in time was the cyclist stationery?arrow_forwardAn attacker at the base of a castle wall 3.60 m high throws a rock straight up with speed 7.50 m/s from a height of 1.60 m above the ground. a) what is its speed at the top? If not, what initial speed must it have to reach the top? b) Find the change in speed of a rock thrown straight down from the top of the wall at an initial speed of 7.50 m/s and moving between the same two points. c) Does the change in speed of the downward-moving rock agree with the magnitude of the speed change of the rock moving upward between the same elevations? d) Explain physically why it does or does not agree.arrow_forwardA Boeing 747 "Jumbo Jet" has a length of 64.5 m. The runway on which the plane lands intersects another runway. The width of the intersection is 24.8 m. The plane decelerates through the intersection at a rate of 5.56 m/s2 and clears it with a final speed of 43.1 m/s. How much time is needed for the plane to clear the intersection?arrow_forward
- Dylan and Sophia are walking along Bluebird Lake on a perfectly calm day. Dylan, determined to impress Sophia by his ability to skip rocks, picks up the flattest rock he can find and gives it a sidearm launch from the edge of the water. The rock acquires a completely horizontal speed of 27.2 m/s from a height of 0.54 meters above the water surface. How much time does it take to hit the surface of the water?arrow_forwardYou throw a ball straight up into the air at 18 m/s from a height of 32 m above the ground. T/I (a) Calculate the time the ball takes to hit the ground. (b) Calculate the velocity of the ball when it hits the ground. (c) Calculate the maximum height of the ball. (d) Explain why you cannot use half the time for (a) to answer (c).arrow_forwardparticle A moves along the line y 30 m with a constant velocity of magnitude 3.0 m/s and parallel to the x axis. At the instant particle A passes the y axis, particle B leaves the origin with a zero initial speed and a constant acceleration of magnitude 0.40 m/s2.What angle u between and the positive direction of the y axis would result in a collision?arrow_forward
- A student launches a small rocket which starts from rest at ground level. At a height h=1.04km, the rocket reaches a speed of vf=391m/s. At that height, the rocket runs out of fuel, so there is no longer any thrust propelling it. After the rocket's engine turns off at a height of h=1.04km, it continues to move upward due to the velocity that it reached. What is the rocket's acceleration, in meters per squared second, during the period from engine shutoff until it returns to the ground? Ignore air resistance.arrow_forwardWhile standing at the edge of the roof of a building, a man throws a stone upward with an initial speed of 5.89 m/s. The stone subsequently falls to the ground, which is 13.1 m below the point where the stone leaves his hand. At what speed does the stone impact the ground? Ignore air resistance and use g = 9.81 m/s2 for the acceleration due to gravity. impact speed: How much time is the stone in the air? elapsed time: m/sarrow_forwardA juggler throws a bowling pin straight up with an initial speed of 6 m/s from an initial height of 3.4 m. How much time elapses until the bowling pin returns to the same initial height?arrow_forward
- Hello. I am working on a problem with motion. The questions asks me to calculate the maximum height (h1), total time (t2), and speed of a ball right before it hits the ground. The question states that A person is throwing a ball upward into the air with an initial speed Vo = 10m/s. Assume that the instant when the ball is released, the person's hand is at a height ho = 1.5m. The speed of the ball at its peak height is zero, and the question needs to be solved in ascending part and descending part. I don't understand how to solve for the maximum height. What is the correct formula to use and why? For other questions like this, I will be able to solve them if I know the formulas for the ascending of the ball and the descent of the ball as well as the explanation. Thank you. For the sake of the question, the ball is being thrown straight up.arrow_forwardYou are playing Hot Rod toy cars with your nephew and niece. Your nephew wanted to show off how fast he could launch a Hot Rod off the dining table 1.00 m above the floor by thrusting the car forward very fast but was no match against your niece who compensated slight lack of speed by pushing the car straight forward reaching a speed of 4.5 m/s at the edge of the table top when she let go of it. What was the magnitude of the final speed when it hit the floor?arrow_forwardA juggler throws a bowling pin straight up with an initial speed of 9.8 m/s from an initial height of 2.8 m. How much time elapses until the bowling pin returns to the same initial height?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON