Question
thumb_up100%
A hydrogen atom in an n = 2, l = 1, ml = -1 state emits a photon when it decays to an n = 1, l = 0, ml = 0 ground state.If the atom is in a magnetic field in the +z direction and with a magnitude of 2.20 T, what is the shift in the wavelength of the photon from the zero-field value? Does the magnetic field increase or decrease the wavelength? Disregard the effect of electron spin.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Similar questions
- X-ray is produced by bombarding a tungsten target with high energy electrons accelerated by 8.8 kV of voltage. Use σ = 1 for the electron transition down to K shell (n = 1) and σ = 7.4 for the electron transition down to L shell (n = 2) for characteristic X-ray. What is energy of the characteristic X-ray of the tungsten (Z = 74) target when the electron in n = 4 orbital moves down to n = 1? What is the energy the characteristic X-ray of the tungsten (Z = 74) target when the electron in n = 3 orbital moves down to n = 2?arrow_forwardFor an electron in a hydrogen atom, which of the following transitions would represent the largest quantum of energy being absorbed? Hydrogen Energy Transitions and Radiation Level n = ∞ n = 5 n = 4 486 nm n = 3 Infrared 434 nm 656 nm wavelengths n = 2 Visible wavelengths Ionization n = 1 Ultravioletarrow_forwardThe L series of the characteristic x-ray spectrum of tungsten contains wavelengths of 0.1099 nm and 0.1282 nm. The L-shell ionization energy is 11.544 keV. Which x-ray wavelength corresponds to an N → L transition? Determine the ionization energies of the M and N shells: If the incident electrons were accelerated through a 40.00 keV potential difference before striking the target, find the shortest wavelength of the emitted radiation:arrow_forward
- Suppose an electron has magnetic quantum number ml = 1. What constraints are on the values of the other quantum numbers (orbital l and principal n) for an electron in an atom? n > l ≥ 1 l ≥ n ≥ 1 l ≤ 1, n ≤ 2 l ≤ 2, n ≤ 1 There are no constraints.arrow_forwardHydrogen gas can be placed inside a strong magnetic field B=12T. The energy of 1s electron in hydrogen atom is 13.6 eV ( 1eV= 1.6*10 J ). a) What is a wavelength of radiation corresponding to a transition between 2p and 1s levels when magnetic field is zero? b) What is a magnetic moment of the atom with its electron initially in s state and in p state? c) What is the wavelength change for the transition from p- to s- if magnetic field is turned on?arrow_forwardWhich transition corresponds to the photon emitted with the greatest frequency. Y, W, or Xarrow_forward
- A hydrogen atom in an n=2 state absorbs a photon.What wavelength photons might be emitted by the atom following absorption?For the answer: You should find 10 total possible wavelengths, with the shortest being ~100 nm and the largest being ~1900nm. You should enumerate all of them.arrow_forwardCan you please help with the attached question? Thanks!arrow_forwardHow many sets of quantum numbers are possible for a hydrogen atom for which (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, and (e) n = 5?arrow_forward
arrow_back_ios
arrow_forward_ios