Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 5.2 A simple air duct with a side exhaust is shown below along with the direction of the velocity vectors at each inlet or outlet. The cross-sectional area at 1 and 3 are identical, Ac1 = Ac3 = 0.5 m². The velocity at 2, V₂, makes a 20° angle with the opening in the side of the duct A₂ = 0.5 m². Measurements indicate that the flow is steady with velocities V₁ = 10 m/s and V3 = 3 m/s. Assume that air behaves like an incompressible substance under these conditions. a) Determine the ratio of the volumetric flow rate at 2 to the volumetric flow rate at 1, /. b) Determine the ratio of the velocity at 2 to the velocity at 1, V₂/V₁. 1 20° Ans: a) 0.65 ≤ / ≤ 0.81 b) 1.75 ≤ V₂/V₁₂ ≤ 2.10arrow_forwardA single-stage axial flow pump with outer radius r2 = 0.240 m and inner radius r1=0.120 m is given. At a radius of r =0.090 m, absolute flow flows in from the axial direction just before the impeller inlet and relative flow flows out in the axial direction just after the impeller outlet. Assuming a flow rate Q = 0.265 m^3/s, a water density p = 1.000 x 103 kg/m^3, a rotation speed n = 2.4 x 10^3 rpm, and a gravitational acceleration g = 9.81 m/s^2, and assuming that the theoretical head Hth = W/g (W: specific work) derived from Euler's law is constant at all impeller radii, answer the following questions. (1) Looking at the following image, find all values of the velocity triangle just before the impeller inlet and just after the impeller outlet at radius r =0.09 m. impeller Figure 37.1 A propeller of an axial flow pump a₁ w1 U₁ Outlet guide vane B₁ Impeller α₂ Vw2 U₂=U₂=Uarrow_forwardA water is pumped at a rate of 87.87 in3/min through a 0.197-in radius pipe on the main floor of a house to a 0.138 in radius pipe in a solar hot water collector 13.12 ft higher on the roof. If the pressure in the pipe on the roof is 17.41 psi, what is the pressure in the larger pipe on the floor?arrow_forward
- Problem 2. An engineer helps with the design of a rotating spray for a dishwasher. The spray has 4 identical jets spaced equally around the rim of a disc. Water enters though a hollow shaft and then flows radially out to the jets. The nozzle of the jet has a diameter D of 0.3 cm and makes an angle a = I (3 with the horizontal plane of the disc(See figure). The jets are oriented so that v2r=0. If the total flowrate Q=50 mL/s and the disc has radius R= 7.5 cm, determine the torque in dyne-cm required to keep the disc from rotating. Water jet R. Water flows radially inside dise to jet Water in View from top View from sidearrow_forwardA single-stage axial flow pump with outer radius r2 =0.240 m and inner radius r1 =0.120 m is given. At a radius of r =0.090 m, absolute flow flows in from the axial direction just before the impeller inlet and relative flow flows out in the axial direction just after the impeller outlet. Assuming a flow rate Q = 0.265 m^3/s, a water density ρ = 1.000 × 103 kg/m^3, a rotation speed n = 2.4 × 10^3 rpm, and a gravitational acceleration g = 9.81 m/s^2 , and assuming that the theoretical head Hth = W/g (W: specific work) derived from Euler's law is constant at all impeller radii, answer the following questions. (1) Find the velocity triangles just before the impeller inlet and just after the impeller outlet at a radius of r =0.09 m.arrow_forwardTowards the inside of a cylindrical tank with diameter: D = 24 m, water flows through a tube 1 with a velocity v1 = 20 m / s and exits through tubes 2 and 3 with velocities v2 = 8 m / s and v3 = 10 m / s respectively. At 4 there is a vent valve open to the air from the atmosphere. (a) What is the speed with which the level rises of water in the tank? (b) what is the average velocity of the air flow at valve 4? assuming air is incompressible. Assume the following pipe diameters: D1 = 3 m, D2 = 2 m, D3 = 2.5 m, D4 = 2 m, consider that the density of water is: ρw = 103 kg / m3 , and the density of air is: ρa = 1.2 kg / m3arrow_forward
- An incompressible fluid flows steadily through two pipes of diameter 0.15 m and 0.2 m which combine to discharge in a pipe of 0.3 diameter. If the average velocities in the 0.15 m and 0.2 m diameter pipes are 2 m/s and 3 m/s respectively, then find the average velocity in the 0.3 m diameter pipe.arrow_forwardIn the jet impact experiment, water jet impacts on a curved vane in the vertical direction. As shown in the figure below, the exit has an angle with respect to the vertical direction. The distance from the nozzle to the vane surface at the exit is h. The water volume flow rate is measured to be Q, the density of water is p, and the cross section area of the nozzle is A₁. Assume that the flow has reached the steady state. (1) Use the Bernoulli's equation to determine the velocity Vout at the exit of the vane. Assume that friction between water and the curved vane can be neglected. (2) Apply the Reynolds transport theorem to derive the expression of the impact force F, on the curved vane (neglect the jet weight). (3) Under the condition of a fixed volume flow rate Q, determine the maximum impact force Fr,max that can be obtained when the angle varies (e.g. in different vane designs). Va out 9 Ao Vout harrow_forwardWhat is the pressure drop in the turbine? Answer: 1176.91 kPa (replace “turbine pressure drop” for “pump pressure increase”)arrow_forward
- A pump has a displacement volume of 122 cm3. It delivers 0.0027 m3/s of oil at 1720 rpm and 85 bars. If the prime mover input torque is 175 N∙m What is the overall efficiency of the pump? What is the theoretical torque required to operate the pump?arrow_forwardQuestion Water enters the horizontal circular nozzle with the inlet diameter of 5 in. At the inlet section, fluid has uniformly distributed velocity of 20 ft/s and pressure of 85 psi. The water exits from the nozzle into the atmosphere at the outlet section where the uniformly distributed velocity is 100 ft/s. Determine the axial component of the anchoring force required to hold the contraction in place. Answer The axial component of the anchoring force required to hold the contraction in place is lbf.arrow_forward4. A centrifugal pump delivers 1500 L/min of water from an initial pressure of 156 kPa to a final pressure of 328 kPa. The area of the inlet pipe is 315 cm² and the area of the discharge pipe is 80 cm?. Solve for the power input to the pump, kW.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY