College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A horizontal spring mass system oscillates on a frictionless plane. At time t=0, it is moving left at position x=9 cm. It has velocity v=0, at positions x=0 cm and 12 cm, and completes one full cycle in 2 seconds. Write the position and velocity
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 2: Special sections of roadway are sometimes paved with “rumble strips” to alert inattentive drivers. In a particular case the grooves are spaced L = 0.26 m apart and the depth of each groove is d = 0.35 cm. As you drive over this rumble strip, the tires of your car oscillate about their equilibrium positions with a frequency of f = 68.6Hz. Refer to the figure, which is not drawn to scale. Part (b) Find the vertical position of the tire, in centimeters, at the time t = 1.85 s. Part (c) With your tire oscillating at a frequency of f = 68.6 Hz and the distance between grooves L = 0.26 m, what is the speed of your car, in kilometers per hour?arrow_forwardA mass-spring motion is governed by the ordinary differential equation d²x dx +b + k(t)x= F(t), dt² dt m where m is the mass, b is the damping constant, k is the spring constant, and F(t) is the external force. We consider the initial conditions x(0) = 1 and x/(0) = 0. Assume the following numerical values for this part of the project: m = 1, k = 1/5, b= 1/5, and F(t) = cos yt. 1 (a) Read section 4.10. Explain what is the resonance frequency, and then compute the resonance frequency for this mass-spring system. (b) The ODE45-solver can be used to obtain the solution curves in MATLAB. Use the script Project2_Q2.m to plot the solutions and estimate the amplitude A of the steady response for y = 0.2, 0.42, 0.6, and 0.8. (c) The script also provide you with the graph of A versus y. For what frequency 7 is the amplitude the greatest? Is it equal to that you obtained in (a)?arrow_forwardTwo particles oscillate in simple harmonic motion with amplitude A about the centre of a common straight line of length 2A. Each particle has a period of 1.5 s, and their phase constants differ by 4 rad. (a) How far apart are the particles (in terms of A) 0.5 s after the lagging particle leaves one end of the path? Enter the exact answer in terms of A. ab sin (a) Ωarrow_forward
- A simple pendulum that consists of a small metal ball attached to a long string oscillating with the amplitude of 10 cm and it moves with a speed of 2.5 m/s through the equillibrium position in the positive x-direction. Determine the length of the string.arrow_forwardA mass m is attached to a spring of force constant 76.0 N/m and allowed to oscillate. The figure (Figure 1) shows a graph of its velocity vx as a function of time t. Find the period, frequency, and angular frequency of this motion. What is the amplitude (in cm)? At what times does the mass reach the position x=±A in the interval between t=0s and t=1.8s including the endpoints? Find the maximum acceleration of the mass. Find the times at which the maximum acceleration occurs in the interval between t=0s and t=1.8s including the endpoints. What is the mass m?arrow_forwardConsider an ideal spring with spring constant k = 20 N/m. The spring is attached to an object of mass m = 2.0 kg that lies on a horizontal frictionless surface. The spring-mass system is compressed a distance xo = 50 cm from equilibrium and then released with an initial speed vo= 0 m/s toward the equilibrium position. x=0 equilibrium initial state a. What is the period of oscillation for this system? b. Starting at t = 0, how long will it take for the object to first return to the equilibrium position?arrow_forward
- A spring with spring constant k= 7 N/m is horizontal and has one end attached to a wall and the other end attached to a M = 4 kg mass. Suppose that the friction of the mass with the floor (i.e., the damping constant) is D = 1 N · s/m, and the forcing function is F(t) = 2 sin(4t). a. Find the long-term motion of the attached mass if initially the mass is at rest at the equilibrium position. That is, what remains of the solution after all exponentially decaying terms have effectively reached zero. Long-term motion: æ(t) = b. Find the long-term motion of the attached mass if initially the mass is pulled 0.1 metres away from the equilibrium position and is released. Long-term motion: æ(t) =arrow_forwardA uniformly dense rigid rod with mass of 6 kg and length of 0.6 m rotates around its center of mass. Two springs with equal spring constants of 200 J/m2 are attached to each end of the rod (thus there are a total of four springs attached to the rod). What is the period (in s) of small amplitude oscillations of this system?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON