A homeowner is trying to move a stubborn rock from his yard. By using a a metal rod as a lever arm and a fulcrum (or pivot point) the homeowner will have a better chance of moving the rock. The homeowner places the fulcrum a distance ?=0.288 mfrom the rock, which has a mass of 465 kg, and fits one end of the rod under the rock's center of weight. If the homeowner can apply a maximum force of 671 N at the other end of the rod, what is the minimum total length ? of the rod required to move the rock? Assume that the rod is massless and nearly horizontal so that the weight of the rock and homeowner's force are both essentially vertical. The acceleration due to gravity is ?=9.81 m/s2.
Rotational Equilibrium And Rotational Dynamics
In physics, the state of balance between the forces and the dynamics of motion is called the equilibrium state. The balance between various forces acting on a system in a rotational motion is called rotational equilibrium or rotational dynamics.
Equilibrium of Forces
The tension created on one body during push or pull is known as force.
A homeowner is trying to move a stubborn rock from his yard. By using a a metal rod as a lever arm and a fulcrum (or pivot point) the homeowner will have a better chance of moving the rock. The homeowner places the fulcrum a distance ?=0.288 mfrom the rock, which has a mass of 465 kg, and fits one end of the rod under the rock's center of weight.
If the homeowner can apply a maximum force of 671 N at the other end of the rod, what is the minimum total length ? of the rod required to move the rock? Assume that the rod is massless and nearly horizontal so that the weight of the rock and homeowner's force are both essentially vertical. The acceleration due to gravity is ?=9.81 m/s2.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps