Structural Analysis
6th Edition
ISBN: 9781337630931
Author: KASSIMALI, Aslam.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A highway with a design speed of 100 km/hr is designed with a sag curve connecting a descending gradient of 3% with an ascending gradient of 5%.
(A) If comfort is the primary design criterion, assuming a vertical radial acceleration of 0.3 m/s^2 calculate the required length of the sag curve (comfort criterion).
(B) If a bridge structure were to be located within the sag curve, with a required clearance height of 5.7 m, then assuming a driver’s eye height of 2 m and an object height of 0.26 m, calculate the required length of the sag curve is stopping sight distance is 215m (clearance criterion).
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- ASAParrow_forwardYou are asked to design a horizontal curve for a four-lane road. The road has 12-ft lanes. Due to expensive excavation, it is determined that a maximum of 47 ft can be cleared from the road's centerline toward the inside lane to provide for stopping sight distance. If local guidelines dictate a maximum superelevation of 8%, what is the highest possible design speed for this curve?arrow_forwardHighway problem.arrow_forward
- As a roadway designer you are asked to design a horizontal curve for a two-lane road that are 12' wide each. There is an enormous boulder in the way of the construction zone and the minimum distance needed to excavate towards to the center must be solved for. The distance is required to sustain a speed of 55mph at a maximum super-elevation of 10%. Find the minimum distance from the boulder to the center of the road that fulfils the design requirementarrow_forwardA vertical curve was designed in 2006 for SSD requirements at a design speed of 120 km/h to connect grades G1 = +1% and G2 = -2%. The curve is to be redesigned for 120 km/h design speed in the year 2050. Vehicle braking technology has advanced such that vehicle deceleration rate has increased by 40% relative to 3.4m/s2 value used in the original design. However, due to the higher percentage of older people in the driving population, design reaction times have increased by 20%. Also, because vehicles have become smaller, the driver’s eye height is assumed to be 0.9 m above pavement. Compute the difference in design curve lengths for the 2006 and 2050 designs. Assume heye =1.08 and hobs = 0.60 m.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning