A highly engineered Ecto-Containment System Protection Grid produces about 8 kW of waste heat in thesystem. A less highly-engineered tubular cross-flow heatsink is designed to dissipate that heat. In this case, the heat sink is a single long pipe carrying anti-freeze through the unit. The pipe has an OD of 80mm and and ID of 16mm. Assume that there is no resistance between the anti-freeze and the OD of the pipe (infinite conduction). Convection is forced, with an airflow of 12 m/s air across it Pr,air = 0.72, density(p) = 1.2 kg/m3, u = 16.83x10−6 Pa − S, k = 0.025 W/mk). The outside air is at 25℃ while the antifreeze is at 180℃. a) Find the Reynold’s Number of flow over the Pipe b) Find the convection coefficient across the pipe c) How long must the pipe be to dissipate all 8kW?
A highly engineered Ecto-Containment System Protection Grid produces about 8 kW of waste heat in thesystem. A less highly-engineered tubular cross-flow heatsink is designed to dissipate that heat.
In this case, the heat sink is a single long pipe carrying anti-freeze through the unit. The pipe has an OD of 80mm and and ID of 16mm. Assume that there is no resistance between the anti-freeze and the OD of the pipe (infinite conduction). Convection is forced, with an airflow of 12 m/s air across it Pr,air = 0.72, density(p) = 1.2 kg/m3, u = 16.83x10−6 Pa − S, k = 0.025 W/mk). The outside air is at 25℃ while the antifreeze is at 180℃.
a) Find the Reynold’s Number of flow over the Pipe
b) Find the convection coefficient across the pipe
c) How long must the pipe be to dissipate all 8kW?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images