Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A frictionless piston-cylinder device contains a saturated liquid-vapor mixture of water at 400K. During a constant pressure, process, 960 kJ of heat is transferred to the surrounding air at 300K. As a result, part of the water vapor contained in the cylinder condenses. Determine the entropy change of the surrounding air in kJ/K.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. 2 kg of water in a piston-cylinder assembly undergoes two consecutive reversible processes: a. Process 1-2: Isentropic compression from P1 = 0.1 MPa, T1=100°C to P2=D0.5 MPa b. Process 2-3: Isobaric process to a temperature T3 = 400 C Determine heat transfer (kJ), work (kJ), and change in specific entropy (kJ/kgK) for each process.arrow_forwardA vessel initially contains 5.0 kg of liquid water and 2.0 kg of ice at 0°C. Energy is added until the ice has just melted. The temperature at the boundary where heat transfer occurs is taken to be the system temperature during the process. The enthalpy of melting is 333.5 kJ/kg. Consider the following processes used to melt the ice. a. Heat is added from the environment at 20°C. Determine the entropy flux and the total entropy generation, both in kJ/K. b. Heat is added from a reservoir at 727°C. Determine the same quantities as in part (a). c. Paddle-wheel work is used to change the state. Determine the total entropy production for the process, in kJ/K. d. Comment on the relative degree of irreversibility for the three processes.arrow_forwardA rigid cylindrical tank stores 80 kg of a substance at 400 kPa and 480 K while the outside temperature is 290 K. A paddle wheel stirs the system transferring shaft work at a rate of 0.7 kW. At the same time an internal electrical resistance heater transfers electricity at the rate of 1.6 kW. A. Do an energy analysis to determine the rate of heat transfer for the tank. B. Determine the absolute value of the rate at which entropy leaves the internal system (at a uniform temperature of 480 K). Answer in kW/K C. Determine the rate of entropy increase in the system's surroundings. Answer in kW/Karrow_forward
- A 15-kg iron block initially at 250°C is quenched in an insulated tank that contains 80 kg of water at 15°C. Assuming the water that vaporizes during the process condenses back in the tank, determine the total entropy change during this process. 2.18 3.28 04.18 1.38 3.18 5.18arrow_forward2. Steam enters an adiabatic turbine steadily at 5 MPa and 500 °C and leaves at 50 kPa as saturated vapor. If the mass flow rate of the steam is 5 kg/s, determine the rate of entropy generation in this process, in kW/K. 6.9781 0.615 7.5931 3.075arrow_forwardA frictionless piston-cylinder device contains a saturated liquid-vapor mixture of water at 400K. During a constant pressure, process, 960 kJ of heat is transferred to the surrounding air at 300K. As a result, part of the water vapor contained in the cylinder condenses. Determine the entropy change of the water in kJ/K.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY