
Structural Analysis
6th Edition
ISBN: 9781337630931
Author: KASSIMALI, Aslam.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A four-lane freeway (two lanes on each direction) is located on mountainous terrain with 11-ft lanes, a 5-ft right-side shoulder, and a 3-ft left-side shoulder, and a 60- mph design speed. The freeway currently operates at capacity during the peak hour. If an additional 11-ft lane is added, and all other factors stay the same, what will the new level of service be?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 2 southbound lanes of a four-lane (i.e. 2 lanes each direction) urban freeway are 12 ft wide. There is at least 6 ft of lateral clearance on the right side of the outer/right lane. There are two ramps within the influence area (i.e. within 3 miles upstream and 3 miles downstream of the center of the segment. What is the estimated FFS (mph)? Provide the answer to the nearest tenths.arrow_forwardA new four-lane divided multilane highway (two lanes in each direction) is being planned with 12-ft lanes, 6-ft shoulders on both sides, and a 50-mi/h speed limit. One 3% downgrade is 4.5 mi long, and there will be 4 access points per mile. The peak-hour directional volume along this grade is estimated to consist of 1800 passenger cars, 140 SUTs, and 60 TTs. If the peak-hour factor is estimated to be 0.85, what level of service will this segment of highway operate under? What is the percent trucks - PT? What is the value of the passenger car equivalence factor - ET? What is the heavy vehicle factor - fHV? What is the median adjustment factor - fM?arrow_forwardConsider the problem of traffic flow on a three-lane (one direction) freeway which can be described by the Greenshields model. One lane of the three lanes on a section of this freeway will have to be closed to undertake an emergency bridge repair that is expected to take several hours. It is estimated that the capacity at the work zone will be reduced by 30 percent of that of the section just upstream of the work zone. The mean free flow speed of the highway is 60 mi/h and the jam density is 130 veh/mi/ln. It is estimated that the demand flow on the highway during the emergency repairs is 86 percent of the capacity. Using the deterministic approach, determine the following for the expected repair periods of 1 h, 1.5 h, 2.5 h, 2.75 h, and 3 h. (a) the maximum queue length (in veh) that will be formed 1 h veh1.5 h veh2.5 h veh2.75 h veh3 h veh (b) the total delay (in h) 1 h h1.5 h h2.5 h h2.75 h h3 h h (c) the number of vehicles that will…arrow_forward
- A four-lane freeway with the following characteristics: ten foot travel lanes lateral obstructions at 0 feet at the roadside total ramp density is 4.5 ramps/mile rolling terrain The roadway has a current peak demand volume of 3500 veh/h. The peak hour factor is 0.95 and there are no trucks, buses, or RVs in the traffic stream because the roadway is classified as a parkway and such vehicles are prohibited. At what level of service will the freeway operate during its peak period of demand?arrow_forwardProblem 2. New freeway is being designed on a level terrain, free-flow speed 70 mph 12-ft lanes, 6-ft lateral clearance Peak hour volume 2700 veh, 12% heavy vehicles PHF = 0.92 FIND: Number of lanes for LOS Carrow_forwardAn existing six-lane divided multilane highway with a field-measure free-flow speed of 45mph serves a peak-hour volume of 4,000 vehicles per hour, with 10% trucks (50% SUT, 50% TT). The PHF is 0.88. The highway has generally rolling terrain. What is the likely level of service for this segment? Good weather, no incidents, no work zones, and regular drivers may be assumed.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning


Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON

Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning

Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education


Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning