
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
thumb_up100%

Transcribed Image Text:A force F = qx³ acts in the x direction, where the value of g is 4.2 N/m³.
How much work is done by this force in moving an object from x=0.00 m
to x=2.6 m?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A person pulls a crate 49.4 meters along a horizontal floor by a constant force 103.2 N, which acts at 37.5 degrees. The floor is rough and exerts a friction force 50 N. What is the total net work done on the crate?arrow_forwardA one-dimensional force has the form F(x) = A x2-Bx where A =1.8 N/m2 and B = 0.65 N/m. How much work is done by the force in moving a 1.2 kg box from x = 0.78 m to x = 2.4 m? Enter your answer in Joules.arrow_forwardAn object of mass 3.00 kg is subject to a force E, that varies with the position as in the figure below. (a) Find the work done by the force on the object as it moves from x = 0 to x = 5.00 m. (b) Find the work done by the force on the object as it moves from x = 5.00 m to x = 12.0 m. (c) Find the work done by the force on the object as it moves from x = 12.0 m to x = 17.0 m. (d) If the object has a speed of 0.400 m/s at x 0, find its speed at x = 5.00 m and its speed at x = 17.0 m. F, (N) 4 3 2 x (m) 4 8 10 12 14 16 18 20arrow_forward
- A coin slides over a frictionless plane and across an xy coordinate system from the origin to a point with xy coordinates (3.70 m, 4.78 m) while a constant force acts on it. The force has magnitude 2.08 N and is directed at a counterclockwise angle of 100° from the positive direction of the x axis. How much work is done by the force on the coin during the displacement?arrow_forwardA person pulls a crate 43.5 meters along a horizontal floor by a constant force 112.3 N, which acts at 37.7 degrees. The floor is rough and exerts a friction force 49 N. What is the total net work done on the crate?arrow_forwardBob is pulling a box of his toys of mass 15.0 kg along a rough horizontal surface for a distance of 6.00 m. The tension force in the rope is 58.0 N and the angle is 30° with respect to the horizontal. The frictional force on the box is 12.0 N. How much work is done on the box by the normal force, in Joule? Use g = 10.0 m/s2. Your answer needs to have 3 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forward
- You have two vectors: A = 7.27î + 3ĵ and B = 4î - 0.95ĵ + 12k. If vector A represents a force vector and vector B is a displacement vector, what is the magnitude of work done by this force?arrow_forwardTwo forces F1 = (-1.5i-0.8j+0.7k) N and F2 = (-0.7i+1.2j) N, are applied to a moving object. what is the net force on the object? if the displacement vectoris d= (8.0i+6.0j+5.0k) m, what is the work done by these two forces?arrow_forwardA bicyclist starting from rest applies a force of F = 239 N to ride his bicycle across flat ground for a distance of d = 210 m before encountering a hill making an angle of θ = 17 degrees with respect to the horizontal. The bicycle and rider have a mass of m = 120 kg combined. In this problem, you can ignore air resistance and other losses due to friction.How much work, W in joules, did the rider do before reaching the hill? What is the bicycle's speed, v in m/s, just before the hill? If the cyclist starts coasting at the bottom of the hill, what distance, di in meters, does the bike travel up the incline?arrow_forward
- a) A stationary bowler is getting ready to throw the bowling ball. She holds a 6.0 kg bowling ball 1.4 m above the ground for 2.0 s. How much work is done on the ball by the bowler? b) A pencil case is pushed eastward with a force of 11 N. Over what distance did the force act on the pencil case if it did 14 J of work on it?arrow_forwardConsider an object of mass m = 4 kg on a frictionless table. The object experiences a repulsive force F = a/x2 + b/x, where F is in newtons and x is the position of the object relative to the origin. Write an expression for the work done by the repulsive force on the object as it moves from an initial position of x1 to a final position of x2. If the object starts at a position of x1 = 8.5 m apart, how much work, in joules, is required by an external force to bring it to a position of x2 = 2.5 m apart when a = 19 and b = 11? If the object starts at rest at a position x3 = 1.3 m and is released, at what speed v, in meters per second, will the object be moving when it is at position x4 = 12.5 m?arrow_forwardA shopper pushes a grocery cart for a distance 21.5 m at constant speed on level ground, against a 32.5 N frictional force. He pushes in a direction 26.5° below the horizontal. What is the work done on the cart by the gravitational force, in joules? What is the work done on the cart by the shopper, in joules? Find the magnitude of the force, in newtons, that the shopper exerts on the cart. What is the total work done on the cart, in joules?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON