Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A food product with 80% moisture content in a 7 cm diameter can wants to be frozen. product density is 1000 kg / m³ thermal conductivity is 1.0 W / (m K) and initial freezing temperature is -2.25 degrees Celsius after 8 hours in freezing medium -35 degrees Celsius Temperature to -10 degrees Celsius estimate convection heat transfer coefficient freezing medium assume the can as an infinite cylinder
h =
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Relationship to Thermodynamics 4. An electrical resistor is connected to a battery, as shown schematically. After a brief transient, the resistor assumes a nearly uniform, steady-state temperature of 95 °C, while the battery and lead wires remain at the ambient temperature of 25 °C. Neglect the electrical resistance of the lead wires Battery V=24 V Resistor dEst dt Air T. = 25C Lead wire (a) Consider the resistor as a system about which a control surface is placed and Equation 1.12c is applied. Determine the corresponding values of Ein(W), Eg(W), Eout (W), and Est(W). If a control surface is placed about the entire system, what are the values of in, Eg, Eout, and Est? (1.12c) Est Ein - Eout + Eg (b) If electrical energy is dissipated uniformly with in the resistor, which is a cylinder of diameter D= 60 mm and length L=250 mm, what is the volumetric heat generation rate, (W/m3)? (c) Neglecting radiation from the resistor, what is the convection coefficient?arrow_forwardA vertical cylinder 6 ft tall and 1 ft in diameter might be used to approximate a man for heat-transfer purposes. Suppose the surface temperature of the cylinder is 78°F, h=2 Btu/h · ft2 . °F, the surface emissivity is 0.9, and the cylinder is placed in a large room where the air temperature is 68°F and the wall temperature is 45°F. Calculate the heat lost from the cylinder. Repeat for a wall temperature of 80°F. What do you conclude from these calculations? Known, Find, Schematic Diagram, Assumption, Properties, Analysis and Commentsarrow_forwardParrow_forward
- Q1) A long bar (k = 1.2 W/m.K, p = 2500 kg/m³, c = 300 J/kg. K) has an initial uniform temperature of 30 °C and subjected to the boundary conditions shown. Take Ax = Ay = 0.01 m. Determine the stability criteria for the nodes 0, 2, 4, 5, 7, 9, 10, and 14. Which one can you use? y Convection with 1 h=6W/m2°C, T∞ = 20°C 0 1 2 3 M 5 6 7 8 9 13 14 10 11 12 Isothermal at 70°C Insulatedarrow_forwardEstimate the thermal conductivity of Applesauce at 35 ° C. (Air content = 78.0% wet basis). Thermal conductivity of the material = Answer W / m ° Carrow_forwardSubject : Thermofluid Question : A wind turbine four 10 cm diameter cups with a center-to-center distance of 40 cm, as shown in Figure 4. Due to a malfunction, the pivot is suddenly stuck, and the cups stop rotating. If the wind speed is 12 m/s moving at the described direction and air density is 1.25 kg/m3. Determine the maximum torque this turbine applies on the pivot.arrow_forward
- Water has many unique molecular properties that make it extremely important. One application that takes advantage of these properties is a so-called evaporative cooler (or swamp cooler, https://en.wikipedia.org/wiki/ Evaporative_cooler), which is a device that cools air through the evaporation of water. Liquid water is changed into water vapor, whereby the energy used to evaporate the water (i.e. latent heat of vaporization) is consumed from the internal energy (i.e. temperature) of the air brought in from outside. The result is a lowering of the outside air temperature as it is brought inside. The process tends to also increase the humidity (vapor content) of the air. Hence it is an attractive option in some semi-arid regions where outside air is very hot and dry. a) What is the latent heat of vaporization for water? Is this value generally large or small compared to other substances? What are some of the implications of this? b) Suppose you have an evaporative cooler that has an…arrow_forwardRadioactive wastes are packarrow_forwardjust case barrow_forward
- (cc) BY-NO-SA Niel Crews, 2013 An insulated, rigid vessel is initially empty (evacuated). However, it is connected to a steam line that is maintained at 200 psia and 500 °F. The valve is opened until the flow into the tank slows and stops (which occurs when the pressure in the tank is equal to the pressure in the steam line), at which point the valve is closed. What is the temperature within the vessel? °Farrow_forwardanswer provided is correctarrow_forwardJohn is employed by a new food processing plant where eggs are to be boiled in large quantities to produce egg salad. John has been assigned the task of determining the minimum cooking time for the eggs, utilizing his vast knowledge of heat transfer. As a basis of calculation, he assumed that the eggs are perfect spheres with a diameter of 5 cm and uniform material properties (r =1000kg/m'; Cp = 3300 J/(kg K) and k=0.75 W/(m-K)). The eggs were taken from a cold storage room at 5°C and immediately put into pots of boiling water at 100°C. The convective heat transfer coefficient of the water is h = 1500 W/m°K. For health safety reasons, the plant requires that the entire egg must be at a temperature above 75°C for at least 20 seconds in order for the cooking process to be complete. a. What is the minimum time necessary to cook the egg to company specifications? b. In the testing lab, John forgot to remove a batch of eggs, and they remained in the cooking pot long enough to reach a…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY