College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 619 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thin film of oil (n = 1.15) is located on smooth, wet pavement. When viewed from a direction perpendicular to the pavement, the film reflects most strongly red light at 640 nm and reflects no light at 548 nm. (a) What is the minimum thickness of the oil film? nm(b) Let m1 correspond to the order of the constructive interference and m2 to the order of destructive interference. Obtain a relationship between m1 and m2 that is consistent with the given data.arrow_forwardthe thickness of human hair is to be measured using the interference pattern produced by an air wedge. red light with a wavelength of 638nm is used on an air wedge that is 25.0cm long. If 10 bright fringes are counted across 1.06cm in the air wedge, what is the thickness of the hairarrow_forwardAnti-reflective coatings on lenses use thin-film interference to eliminate the reflection of a particular color. Suppose a glass lens (ng = 1.51) is covered with a thin film (nf = 1.32) to prevent green light (λ = 536 nm) from being reflected. Write an expression for the minimum thickness the film can have, t.arrow_forward
- A thin film of oil (n = 1.30) is located on smooth, wet pavement. When viewed from a direction perpendicular to the pavement, the film reflects most strongly red light at 640 nm and reflects no light at 548 nm. (a) What is the minimum thickness of the oil film? nm (b) Let m₁ correspond to the order of the constructive interference and m₂ to the order of destructive interference. Obtain a relationship between m₁ and m₂ that is consistent with the given data.arrow_forwardWhat visible wave length will be reflected in this scenario: A 700 nm thick soap film floats on a plate. From the air, white light is struck onto the film at a normal incidence. the wavelength of visible light to air is 400 nm to 700 nm. The index of the soap film is 1.74 and 1.58 for the plate.arrow_forwardYou wish to make an anti-reflective coating from a material with index of refraction 1.09 to put on top of glass with an index of refraction 1.56. What is the minimum thickness of the coating that will produce destructive interference for light of wavelength 455.0 nm? Answer in units of nm.arrow_forward
- Light of wavelength 427 nm (in vacuum) is incident on a diffraction grating that has a slit separation of 1.2 x 105 m. The distance between the grating and the viewing screen is 0.17 m. A diffraction pattern is produced on the screen that consists of a central bright fringe and higher-order bright fringes (see the drawing). (a) Determine the distance y from the central bright fringe to the second- order bright fringe. (Hint: The diffraction angles are small enough that the approximation tan(0)~ sin(0) can be used.) (b) If the entire apparatus is submerged in water (nwater = 1.33), what is the distance y? (a) y = i (b) y = i eTextbook and Media Diffraction grating 8 -L- Screen 2nd-order maximum Central maximum (m = 0)arrow_forwardA thin film of thickness 187.5 nm and refractive index 1.6 is coated on plastic of refractive index 1.5. Red light of wavelength 600 nm is incident normally on the film. (a) Determine total path difference between light reflecting from the top and bottom of the film (b) Express path difference in terms of wavelength. (c) what type of interference do we have for the reflected light?arrow_forwardParallel rays of monochromatic light with wavelength 575 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. If the intensity at the center of the central maximum is 4.20×10−4 W/m2, what is the intensity at a point on the screen that is 0.850 mm from the center of the central maximum?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON