A fighter aircraft is to operate at 200 m/s in air at standard conditions (p= 1.2 kg/m³). A model is constructed to 1/20 scale (length ratio) and tested in a wind tunnel at the same air temperature (same air viscosity) to determine the drag force. The drag force Fp is a function of the air density pand viscosity H, the velocity V and the cross section length of the airplane D. a) Use dimensional analysis to prove that: F and PVD What are these two dimensionless numbers? b) If the model is tested at 50 m/s, what air density should be used in the wind tunnel? Comment the result and give a recommendation. c) If the model drag force is 250 N at 50 m/s, what will be the drag force of the prototype?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A fighter aircraft is to operate at 200 m/s in air at standard conditions (p= 1.2 kg/m³). A
model is constructed to 1/20 scale (length ratio) and tested in a wind tunnel at the same
air temperature (same air viscosity) to determine the drag force. The drag force Fp is a
function of the air density p and viscosity µ, the velocity V and the cross section length of
the airplane D.
a) Use dimensional analysis to prove that:
F,
and
PV²D²
pVD
What are these two dimensionless numbers?
b) If the model is tested at 50 m/s, what air density should be used in the wind
tunnel? Comment the result and give a recommendation.
c) If the model drag force is 250 N at 50 m/s, what will be the drag force of the
prototype?
Lift force
200 m/s
Drag force
Transcribed Image Text:A fighter aircraft is to operate at 200 m/s in air at standard conditions (p= 1.2 kg/m³). A model is constructed to 1/20 scale (length ratio) and tested in a wind tunnel at the same air temperature (same air viscosity) to determine the drag force. The drag force Fp is a function of the air density p and viscosity µ, the velocity V and the cross section length of the airplane D. a) Use dimensional analysis to prove that: F, and PV²D² pVD What are these two dimensionless numbers? b) If the model is tested at 50 m/s, what air density should be used in the wind tunnel? Comment the result and give a recommendation. c) If the model drag force is 250 N at 50 m/s, what will be the drag force of the prototype? Lift force 200 m/s Drag force
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Dimensional Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY