Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Task 1 (d) The force, F, of a turbine generator is a function of density p, area A and velocity v. By assuming F = apª A® vc and dimensional homogeneity, find a, b and c and express F in terms of p, A and v. (a, a, b and c are real numbers). Make the following assumptions to determine the dimensionless parameter: F = 1k N if the scalar values of pAv= 1milli. (e) The dynamic coefficient of viscosity µ (viscosity of a fluid) is found from the formula: µAv F = Fis the force exerted on the liquid, A is the cross sectional area of the path, v is the fluid velocity and l is the distance travelled by the fluid. Using dimensional analysis techniques, determine the equation that governs µ and its dimensions using the results of (b) and the equation in c, clearly showing all steps in the dimensional analysis.arrow_forwardQ2/ A car wheel is supposed to be travelling at a speed of 80 mile per hour in the air. A scaled model (1:4) is tested in water instead of air and is supposed to have dynamic similarity. a) Determine the model speed in water b) then find the force ratio of the model to prototype if you know that: (pair = 1.22 kg/m³, µair = 1.78 x 10- 5 N.s/m?, Pwater 998 kg/m², µwater = 0.001 N.s/m²).arrow_forwardconsider 'g' Find the drag force on the wallsarrow_forward
- Acording to Darcy law, P is a pressure, V is a velocity, D is a diameter, g is acceleration gravity, f is dimensionless coefficient. Is the equation dimensionaly consistent?arrow_forwardThe pressure difference ∆p produced by a water pump, and the power P required to operate it, each depend on the size of the pump, measured by the diameter D of the impeller, the volume flow rate ˙q, the rate of rotation ω, the water density ρ and dynamic viscosity µ. (a) Express the non-dimensional pressure difference and power as separate functions of the other non-dimensional groups. (b) Tests on a model pump are performed at 0.5 × full scale, at a rotation rate that is 2 × the full-scale value. To achieve dynamic similarity in the model test: (i) what would the volume flow rate of the water need to be in the model test compared to the full-scale? (ii) What would the pressure difference be compared to the full scale? (iii) What would the power consumption be relative to the full scale?arrow_forwardhelparrow_forward
- Using II-Theorem method to Express (n) in terms of dimensionless groups.The efficiency (n) of a fan depends upon density (p), and dynamic viscosity (u), of the fluid, angular velocity (@), diameter of the rotator (D), and discharge (Q). Q3/ A petroleum crude oil having a kinematics viscosity 0.0001 m?/s is flowing through the piping arrangement shown in the below Figure,The total mass flow rate is equal 10 kg/s entering in pipe (A) . The flow divides to three pipes ( B, C, D). The steel pipes are schedule 40 pipe. note that the dynamic viscosity 0.088 kg/m.s. Calculate the following using SI units: 1- The type of flow in pipe (A). 2- The mass velocity in pipe (B) GB. 3- The velocity in pipe (D) Up. 4- The Volumetric flow rate in pipe (D) QD. 5- The Volumetric flow rate in pipe (C) Qc. Og = 2o mm Ug = 2UA Perolenm crude oIL A ma = 1o Kg/s O = 5o mm mic = ? Go = 7000 k9/m.s Nate that!- O, = 30 mm. D:0iameter. U:velocity G mass velocity mimass How vatearrow_forwardA student team is to design a submarine for a design competition. The overall length of the prototype submarine is 4.85 m. The prototype submarine is expected to moves through freshwater in the lake at 0.440 m/s. The student team builds a one-fifth scale model to test in their university's wind tunnel. Calculate the wind tunnel air speed in order to achieve similarity with the prototype submarine. For water at T= 15 °C and atmospheric pressure, the density is p = 999.1 kg/m³ and the dynamic viscosity is µ = 1.138 x 10³ kg/m-s. For air in the wind tunnel at T= 25 °C and atmospheric pressure, the density is p= 1.184 kg/m³ and the dynamic viscosity is µ = 1.849 x 10-$ kg/m's.arrow_forwardThe following equation may be used to estimate the take-off ground run for an aircraft: Equation has been attached as an image. Calculate the take-off ground run, from a runway at ISA-SL conditions, for a twin engine aircraft for which the following data may be assumed Aircraft lift-off speed 155 knots Max take-off gross weight 220 tonnes Wing planform area (S) 358 m Wing CL (t/o flaps deployed, a = 0) 1.1 Wing span 53.18 m Oswald efficiency factor, e 0.7 KGE = CD(IGE) / Co(OGE) 0.4 Co sum (fuselage, wing, tailplane and nacelle) 0.015 Co for undercarriage 0.021 Co for flaps at taking-off setting 0.0073 Coefficient of rolling friction, u 0.02 Engine thrust (assumed constant) 310 kN per engine It may be assumed that 1knot = 0.51444 m/s It may be assumed that 1knot = 0.51444 m/sarrow_forward
- CH, CQ and n are functions of CP. Draw the dimensionless performance curves of the turbine on a single graph by makingthe necessary scalings. (Fit the curve by using the excel program for drawing. Also give the values you used for plotting inthe table) ÖN=5arrow_forward20 4. An airship is to operate at 20 m/s in air at standard conditions (p 1.225 kg/m³, p 101,300 Pa). A model is constructed to scale and tested in a variable-pressure wind tunnel at the same air temperature to = determine the drag. GOOD YEAR The Goodyear Blimp is an example of an airship. (a) What criterion should be used to determine dynamic similarity? (You may assume that roughness is not important for this problem.) (b) If the model is tested at 20 m/s, what pressure should be used in the wind tunnel? (c) If the model drag force is found to be 250 N, what will be the drag of the full-scale airship?arrow_forwardAnswer all the questions 1) Using dimensional equations, convert: 700 m* /(day. kg) to cem* /(min. g). 2) Convert 210 X 10 kJ/min to hp 3) Calculate the weight in lbr of a 30.0-lbm object. 4) Calculate the mass in kg of an object that weighs 25 Newton. 5) The density of a fluid is given by the empirical equation: p = 70.5 exp(8.27 x 10-7P) where p is density (Ib/ft) and Pis pressure (lb,/in.?). (a) What are the units of 70.5 and 8.27 x 10-7? (b) Calculate the density in g/cm for a pressure of 9.00 x 10 N/m?. 6) The vapor pressures of 1-chlorotetradecane at several temperatures are tabulated here. T(C) 98.5 131.8 148.2 166.2 199.8 215.5 p* (mm Hg) 1 5 10 20 100 60 Use two different method to estimate the value of P' at T = 190 °C (7) The specific gravity of gasoline is approximately 0.70. a- Determine the mass (kg) of 50.0 liters of gasoline. b- The mass flow rate of gasoline exiting a refinery tank is 1150 kg/min. Estimate the volumetric flowrate in liters/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY