Question
Six identical massless rods are supported by a fulcrum and are tilted at the same angle to the horizontal. A mass is suspended from the left end of the rod. The rod and mass are balanced by a force F. Rank the magnitude of the vertical force F applied to the end of the rod. (Enter the values, A > B > C. Make sure you put a space between each letter and symbol.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Similar questions
- The force F in the figure keeps the 8.3 kg block and the pulleys in equilibrium. The pulleys have negligible mass and friction. Calculate the tension T in the upper cable. Tarrow_forwardForces F₁, F₂, and F 2 3 act on the structure shown below, at an overhead view. We wish to put the structure in equilibrium by applying a fourth force, at a point such as P. The fourth force has vector components an We are given that a = 2.9 m, b = 3.4 m, c = 1.3 m, F₁ = 21 N, and F F2= 12 N, and F3 = 6.4 N. (a) Find F 47 F (b) Find F. (c) Find d. N N E a Varrow_forwardA 12.2 m long board is supported from beneath at two locations. One is at the far left end of the board. The other is 1 m from the right end of the board. The board has a mass of 39.3 kg. What is the normal force (in newtons) applied by the right support?arrow_forward
- Needs Complete typed solution with 100 % accuracy.arrow_forwardA 15.7 m long board is supported from beneath at two locations. One is at the far left end of the board. The other is 1.2 m from the right end of the board. The board has a mass of 39.7 kg. What is the normal force (in newtons) applied by the right support?arrow_forwardF. y M. mg AF FY f.Y Fixle Axis The ladder in the picture has a mass of 39 kilograms and a length 3.4 meters. What is the normal force pushing the ladder up from the floor? This force is labeled Ff v in the picture. FN Assume that the ladder's weight is evenly distributed, so it can be treated as a single force through the middle. If the ladder is at a 70° angle from the ground, what is the torque exerted by the weight (using the floor as the pivot point)? N.m The torque from the ladder must be balanced by the torque caused by the normal force on the wall, labeled Fw in the picture. Calculate this force. Fw = The normal force from the wall must be balanced by the friction force from the floor, labeled Ff y in the picture Determine thnarrow_forward
- Please answer clearly.arrow_forwardAs shown below, a beam of length L is in equilibrium and is attached to a cable which is pulling it against a frictionless wall. The beam is not attached to the wall and the wall is only exerting a normal force on the beam. Additionally, there is a 792 N box hanging on a wire from the end of the beam. Determine the cable tension & the beam weight. 0.86 L 45° 792 N tension= beam weight=arrow_forwardcable 8. A 20 kg uniform beam 10m long is attached to a wall with a cable. The 40.0° cable is attached to the middle of the beam at 90° to the beam. A box box of mass 50 kg is suspended from the beam as shown. 50 0° a. Draw a free body diagram labelling all the forces acting on the beam (include the forces acting on the floor hinge). Choose and label an appropriate pivot point "P". Label all distances from this point. b. Determine the tension in the cable. с. Determine the force acting on the hinge at the bottom.arrow_forward
- Directions: Assume, unless otherwise specified, that all numbers have at least 3 significant figures. F (N) Students collect data, see graph, for the force involved in stretching a rubber band. The data is well fit by the equation F = 33.65 x0.4971, 12 10 where F is in newtons and x is in meters. One end of the rubber band is attached to a stationary vertical rod and the other end to a 0.3 kg mass. The mass rests on a frictionless horizontal surface. The mass is pulled back such that the rubber band is stretched by 0.8 m from its unstretched length and then released from rest. 4. x (m) 0,1 0.02 0.04 0.06 0.08 A. What is the speed of the mass after it has traveled 0.4 m? B. What is the maximum speed of the object?arrow_forwardA horizontal 12.5 kg beam 2.2 m long is attached to the wall by a hinge at its left end. A cable is connected from the right end of the beam to the wall, at an angle of 26 ° above the beam, as shown below. A 60 kg sign is hung 1.7 m from the left end of the beam. Part A Find the tension in the cable. Part B Find the horizontal force exerted on the wall by the hinge. Part C Find the vertical force exerted on the wall by the hingearrow_forwardThe diagram below shows a particle in equilibrium under the forces shown. Obtain an equation by resolving in the Ox direction, then obtain an equation by solving in the Oy direction, and then use these equation to find the unknown force and angle. y 45° 3 N 1 N P Ꮎ ; x 15√2 Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios