Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Let the pressure gradient in the pipe be 1500 Pa/m and the diameter of the pipe be 4.0 mm. What is the average speed through this pipe of 20∘C motor oil? What is the average speed through this pipe of 100∘C motor oil?arrow_forwardAn oil of viscosity 0.1NS/m2 and relative density 0.9 is flowing through a circular pipe of diameter 50 mm and of length 300 m. The rate of flow of fluid through the pipe is 3.5 litres per second. Find the pressure drop in a length of 300 m and also the shear stress at the pipe wall. 11:04 PM !arrow_forward4. The space between two 6-in. long concentric cylinders is filled with glycerin (viscosity = 8.5 X 10³ lb-s/ft²). The inner cylinder has a radius of 3 in. and the gap width between cylinders is 0.1 in. Determine the torque and the power required to rotate the inner cylinder at 180 rev /min. The outer cylinder is fixed. Assume the velocity distribution in the gap to be linear. Refer to Fig. P1.3. Ans. 0.944 ft.-lb, 17.8 ft-lb/sarrow_forward
- Oil flows through the 100-mm-diameter pipe with a velocity of 8 m/s (Figure 1). The flow occurs in the horizontal plane. Take p = 900 kg/m³. ▼ Part A If the pressure in the pipe at A and B is assumed to be 90 kPa, determine the component of force the flow exerts on the elbow. Express your answer to three significant figures and include the appropriate units. ▾ View Available Hint(s) ▾ Hint 1. How to determine the component of force the flow exerts on the elbow Build a free body diagram of the control volume containing oil within the pipe and elbow between cross-sections at A and B. Then using the linear momentum equation determine the component of the force the flow exerts on the elbow. F₂ = Part B HÅ Submit Previous Answers Request Answer Value Fy = X Incorrect; Try Again; 4 attempts remaining Submit Units If the pressure in the pipe at A and B is assumed to be 90 kPa, determine they component of force the flow exerts on the elbow. Express your answer to three significant figures and…arrow_forwardThe 8 mm gap between two large vertical parallel plane surfaces is filled with a liquid of dynamic viscosity 2 * 10 ^ - 2 * Ns / (m ^ 2) A thin sheet of 1 mm thickness and 150mm * 150 mm size, when dropped vertically between the two plates attains a steady velocity of 4 m/s. Determine weight of the plate..arrow_forwardWater flows steadily through a horizontal 30 degree pipe bend. At the inlet point 1, the diameter is 0.3 m, the velocity is 12 m/s, and the pressure is 128 kPa gauge. At the outlet point 2, the diameter is 0.38 m and the pressure is 145 kPa gauge. Determine the forces F_x and F_y necessary to hold the pipe stationary.arrow_forward
- Problem Consider a cylindrical pipe of length L and diameter D = 2R. The angle that the axis of the pipe forms with the vertical direction is a. Assume that when the fluid enters the pipe its velocity is uniform (i.e., it has the same value over the entire cross-section of the pipe) and equal to U in the axial direction. In the radial and angular directions, the velocity is zero. So, it is: 2 =0: v(r, 0, 2) = Ue, (1.1) Here v is the fluid velocity and e, is a vector of unit magnitude parallel to the coordinate axis z; furthermore, we have assumed that the pipe inlet is located at z = 0. Near the entrance of the pipe, the velocity profile varies in the axial direction. But after a certain entrance length, the profile becomes fully developed, no longer changing with z. The evolution of the velocity profile is sketched in Fig. 1, where, for clarity, the pipe inclination is not shown. The entrance length is denoted by L.. For z > L., the fluid velocity is no longer a function of the axial…arrow_forwardWater at 10°C has a kinematic viscosity of 1.30 X 10-6 m2/s flows at the rate of 895.55 L/min from the reservoir and through the pipe shown in the Fig. below. Compute the pressure at point B, considering the energy loss due to friction, but neglecting other losses. Also, use pipe roughness of 1.50 X 10-6 m. Hint: Use the appropriate formula to determine the friction factor, f to 4 decimal places (flow type dependant); g = 9.81 and round off to 3 decimal places for all other step calculations leading to the final answer including the final answer.arrow_forwardA cylindrical machine part moves within a surrounding cylinder. The centrelines of the part and the surrounding cylinder are coincident. The cylinder is full of an oil (viscosity 0.25kg/ms) that is not flowing i.e. no pressure gradient is applied. What is the value of the viscous force exerted on the machine part as it moves along the cylinder at a speed of 9m/s? • The machine part is 0.06m long and has a radius of 0.041m. • The ratio of the machine part radius to the cylinder radius is 0.98. • Assume that the flow is dominated by viscous forces. • Give your answer as an absolute value i.e. no negative sign, in Newtons to one decimal place.arrow_forward
- In a system where the Froude model will be used, the flow rate for the prototype is given as 3 m3 / s. In the model, the velocity at point A is 0.2 m / s and the force acting on point A is calculated as 1 N. Calculate the flow rate and velocity of the point corresponding to point A in the model and the magnitude of the force affecting the same point. Determine the pressure scale. The geometric scale will be taken as 1/100. Fluids used in the model and prototype are the same and are waterarrow_forwardDon't provide the wrong solution, Humble request.arrow_forwardPart A Let the pressure gradient in the pipe be 1400 Pa/m and the diameter of the pipe be 4.0 mm. What is the average speed through this pipe of 20°C motor oil? Express your answer in millimeters per second. ν ΑΣφ ? Vavg 1 = mm/s Submit Request Answer Part B What is the average speed through this pipe of 100° C motor oil? Express your answer in millimeters per second. Hνα ΑΣΦ ? Vavg 2 = mm/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY