
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A crate of mass 48.1 kg rests on a level surface, with a coefficient of kinetic friction 0.202. You push on the crate with an applied force of 239 N. What is the magnitude of the crate s acceleration as it slides?
4.97 m/s^2
|
||
1.79 m/s^2
|
||
5.96 m/s^2
|
||
2.99 m/s^2
|
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forwardA force F applied to an object of mass m1 produces an acceleration of 3.00 m/s2. The same force applied to a second object of mass m2 produces an acceleration of 1.00 m/s2. (a) What is the value of the ratio m1/m2? (b) If m1 and m2 are combined into one object, find its acceleration under the action of the force F.arrow_forwardA crate remains stationary after it has been placed on a ramp inclined at an angle with the horizontal. Which of the following statements must be true about the magnitude of the frictional force that acts on the crate? (a) It is larger than the weight of the crate. (b) It is at least equal to the weight of the crate. (c) It is equal to sn. (d) It is greater than the component of the gravitational force acting down the ramp. (e) It is equal to the component of the gravitational force acting down the ramp.arrow_forward
- Two blocks, each of mass m = 3.50 kg, are hung from the ceiling of an elevator as in Figure P4.33. (a) If the elevator moves with an upward acceleration a of magnitude 1.60 m/s2, find the tensions T1 and T2 in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0 N, what maximum acceleration can the elevator have before a string breaks? Figure P4.33 Problems 33 and 34.arrow_forwardA black widow spider hangs motionless from a web that extends vertically from the ceiling above. If the spider has a mass of 1.5 g, what is the tension in the web?arrow_forwardFor t 0, an object of mass m experiences no force and moves in the positive x direction with a constant speed vi. Beginning at t = 0, when the object passes position x = 0, it experiences a net resistive force proportional to the square of its speed: Fnet=mkv2i, where k is a constant. The speed of the object after t = 0 is given by v = vi/(1 + kvit). (a) Find the position x of the object as a function of time. (b) Find the objects velocity as a function of position.arrow_forward
- (a) An elevator of mass m moving upward has two forces acting on it: the upward force of tension in the cable and the downward force due to gravity. When the elevator is accelerating upward, which is greater. T or w? (b) When the elevator is moving at a constant velocity upward, which is greater. T or w2 (c) When the elevator is moving upward, but the acceleration is downward, which is greater. T or w? (d) Let the elevator have a mass of 1500 kg and an upward acceleration of 2.5 m/s2. Find T. Is your answer consistent with the answer to part (a)? (e) The elevator of part (d) now moves with a constant upward velocity of 10 m/s. Find T. Is your answer consistent with your answer to part (b)? (f) Having initially moved upward with a constant velocity, the elevator begins to accelerate downward at 1.50 m/s2. Find T Is your answer consistent with your answer to part (c)?arrow_forwardA car accelerates down a hill (Fig. P4.57), going from rest to 30.0 m/s in 6.00 s. A toy inside the car hangs by a string from the cars ceiling. The ball in the figure represents the toy, of mass 0.100 kg. The acceleration is such that the string remains perpendicular to the ceiling. Determine (a) the angle and (b) the tension in the string. Figure P4.57arrow_forwardA hockey stick pushes a 0.160-kg puck with constant force across the frictionless surface of an ice rink. During this motion, the pucks velocity changes from 4.00 m/s to (6.00 + 12.00) m/s in 4.00 s. a. What are the scalar components of the force acting on the puck? b. What is the magnitude of the force acting on the puck?arrow_forward
- Review. A block of mass m = 2.00 kg is released from rest at h = 0.500 m above the surface of a table, at the top of a = 30.0 incline as shown in Figure P4.53. The frictionless incline is fixed on a table of height H = 2.00 m. (a) Determine the acceleration of the block as it slides down the incline. (b) What is the velocity of the block as it leaves the incline? (c) How far from the table will the block hit the floor? (d) What time interval elapses between when the block is released and when it hits the floor? (e) Does the mass of the block affect any of the above calculations? Figure P4.53 Problems 53 and 59arrow_forwardYou push an object, initially at rest, across a frictionless floor with a constant force for a time interval t, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v? (a) 4 t (b) 2 t (c) t (d) t/2 (e) t/4arrow_forwardA block of ice (m = 15.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 95.0 N for 1.54 s. a. Determine the magnitude of each force acting on the block of ice while you are pulling. b. With what speed is the ice moving after you are finished pulling? Repeat Problem 71, but this time you pull on the block at an angle of 20.0.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning