Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A container with 0.2450.245 L of water is placed in a microwave and radiated with electromagnetic energy with a wavelength of 10.510.5 cm. The temperature of the water rose by 69.969.9 °C. Calculate the number of photons that were absorbed by the water. Assume water has a density of 1.00 g⋅mL−11.00 g·mL−1 and a specific heat of 4.184 J⋅g−1⋅°C−14.184 J·g−1·°C−1.
number of photons =__________________________________photons
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider burning ethane gas, C2H6 in oxygen (combustion) forming CO2 and water. (a) How much energy (in J) is produced in the combustion of one molecule of ethane? (b) What is the energy of a photon of ultraviolet light with a wavelength of 12.6 nm? (c) Compare your answers for (a) and (b).arrow_forwardA container with 0.2450.245 L of water is placed in a microwave and radiated with electromagnetic energy with a wavelength of 14.114.1 cm. The temperature of the water rose by 72.172.1 °C. Calculate the number of photons that were absorbed by the water. Assume water has a density of 1.00 g·mL−11.00 g·mL−1 and a specific heat of 4.184 J·g−1·°C−14.184 J·g−1·°C−1.arrow_forwardSuppose that the microwave radiation has a wavelength of 12.4 cm. How many photons are required to heat 285 mL of coffee from 25.0 ∘C∘C to 62.0 ∘C∘C? Assume that the coffee has the same density, 0.997 g mL−1, and specific heat capacity, 4.184 J g−1 K−1, as water over this temperature range. Express the number of photons numerically.arrow_forward
- Light in the infrared portion of the electromagnetic spectrum excites vibrations of certain molecules, causing them to move more rapidly. In this manner, infrared light can be used to heat a substance. If a 1000.-mW, 808-nm laser is used to heat a 50.0-mL sample of water from 22.0 o C to its boiling point, a) how many photons will the water absorb and b) what is the minimum amount of time this will take?arrow_forwardElectromagnetic radiation with a wavelength of 575 nm appears as yellow light to the human eye. If a laser emits 3.8 x 1016 photons of this energy in a pulse, what is the energy of the pulse in mJ?arrow_forwardWater is exposed to infrared radiation of wavelength 2.8×10−4 cm . Assume that all the radiation is absorbed and converted to heat. How many photons will be required to raise the temperature of 2.1 g of water by 2.3 K ? Express your answer using two significant figures.arrow_forward
- An x-ray has a wavelength of 6.88 nm. Calculate the energy of one mole of photons of this radiation in MJ (megajoules).arrow_forwardYour calibrated soup container has served you pretty well over the last several weeks, so you have decided to use it to heat up your soup for lunch using the microwave oven located just outside your lab. The oven warms food by delivering electromagnetic radiation with a frequency of 2.45 GHz at a rate of 7.39 x 10^26 photons per second. Your soup has a mass of 524 grams and your calibrated container has a heat capacity of 69.9 J °C-1. If the initial temperature of your soup is 25 °C, what will be its temperature if you allow it to heat in the microwave for 1.5 minutes? [Assume that the specific heat capacity of your soup is 4.18 J g-1 °C-1.]arrow_forwardW 4. (a) A laser emits light that has a frequency of 4.69 X 10¹4 s¹. What is the energy of one photon of this radiation? V (b) If the laser emits a pulse containing 5.0 X 1017 photons of this radiation, what is the total energy of that pulse? (c) If the laser emits 1.3 X 10-2 J of energy during a pulse, how many photons are emitted?arrow_forward
- An electron in a hydrogen atom travels from energy level n = 2 to energy level n = 3. Would the electron be absorbing or emitting this energy in this transition? What is the change in energy (ΔE) for this transition? Show all work, including units and signs, and give your answer for ΔE to three significant figures.arrow_forwardthe microwaves in an oven are of a specific frequency that will heat the water molecules contained in food. (this is why most plastics and glass do not become hot in microwaves; they do not contain water molecules.) This frequency is about 3 X 109 Hz. What is the energy of one phonon in these microwaves? Show calculationsarrow_forwardA photon of light from a laser has an energy of 2.287 × 10−19 J. What is the total energy in two moles of these photos?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning