College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Problem 1.
A
L = 0.215 m
B = 0.75 T
A = 5.5 m/s4
R = 125 Ω
A. Calculate the numerical value of I at t = 2s in A.
I(t=2s) = |
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 2.00 cm diameter, 14.0 cm long solenoid has 60.0 turns and has a 1.00 cm diameter loop inside it. The loop has a resistance of 0.400 Ω. What is the current in the loop at 0.00600 s? The the maximum and the minimum current in the graph have the same magnitude which is 3.60 A.arrow_forward6. A loop of a wire has the shape shown in the drawing. The top part of the wire is bent into a semicircle of radius r= 0.18 m. The normal to the plane of the loop is parallel to a constant magnetic field of magnitude 0.79 T. What is the magnitude of the change in the magnetic flux that passes through the loop when, starting with the position shown in the drawing, the semicircle is rotated rough half a revolution? Wb B (into paper)arrow_forwardA piece of copper wire has a resistance per unit length of 8.70 x 10 o/m. The wire is wound into a thin, flat coil of many turns that has a radius of 0.146 m. The ends of the wire are connected to a 12.0-V battery. Find the magnetic field strength at the center of the coil. Number Unitsarrow_forward
- In the figure (Figure 1) a conducting rod of length L = 40.0 cm moves in a magnetic field B of magnitude 0.410 T directed into the plane of the figure. The rod moves with speed v = 5.60 m/s in the direction shown. Part F What is the potential difference across the rod if it moves parallel to ab? Express your answer in volts. Figure < 1 of 1 ? V = 0.91 V B х ахarrow_forwardc. What is the resistance of the coil given that the diameter of the wire is 2.00 mm? (Recall, resistance of wire is given by R = ρL/A, where ρ is the resistivity of the metal, L is the length of the wire, and A is the cross-sectional area.)arrow_forwardA the moving rod has a resistance of 0.25 Ω and moves on rails 20.0 cm apart. The stationary U-shaped conductor has negligible resistance. When a force of 0.410 N is applied to the rod, it moves to the right at a constant speed of 1.50 m/s. What is the magnetic field?arrow_forward
- The slide generator in the figure below is in a uniform magnetic field of magnitude 0.0500 T. The bar of length 0.390 m is pulled at a constant speed of 0.500 m/s. The U-shaped conductor and the bar have a resistivity of 2.75 x 10-80 m and a cross-sectional area of 9.50 x 10-4 m². Find the current in the generator when x = 0.680 m. (Note that the A in the image below is the area of the loop, not the cross-sectional area of the conductor and bar.) A Bulb is unlit. A. B. Bulb is lit. O O O O( O O a G O O O O ܥܘ O O O O OG O O O O O O B BO Ā OOO O B₁ I loop O 0 0 O X F O • O O O O mech O O Activate Windows Go to Settings to activate Windows.arrow_forwardThe two wires shown in the figure below are separated by d = 10.4 cm and carry currents of I = 5.40 A in opposite directions. Two vertical, parallel wires are separated by a distance d. To the left of the left wire is an arrow labeled I pointing up. To the right of the right wire is an arrow labeled I pointing down. A point P2 is a distance 2d to the left of the left wire, and a point P1 is a distance d to the right of the right wire. (a) Find the magnitude and direction of the net magnetic field at a point midway between the wires. magnitude ?T direction (b) Find the magnitude and direction of the net magnetic field at point P1, 10.4 cm to the right of the wire on the right. magnitude ?T direction (c) Find the magnitude and direction of the net magnetic field at point P2, 2d = 20.8 cm to the left of the wire on the left. magnitude ?T directionarrow_forwardA circuit is made with a resistor of resistance 25 ohms and a movable bar with length 15 cm moving to the left with speed 8 m/s. The whole circuit is in a magnetic field B = 1.5 T (into page). Use this set up to answer the following questions. What is the magnitude (no negative answers) of the power delivered to the resistor in watts? Answer to 4 decimal places.arrow_forward
- You've decided to make a magnetic projectile launcher for your science project. An aluminum bar of length l = 5.19 cm slides along metal rails through a magnetic field B = 0.664 T. The switch closes at t = 0 s , while the bar is at rest, and a battery of emf = 16.50 V starts a current flowing around the loop. The battery had internal resistance, r = 0.139 Ω. The resistance of rails and the bar are effectively zero. What is the terminal speed (in m/s) of the bar?arrow_forwardYou wish to construct a solenoid with a diameter of 2.00 cm that will produce a magnetic field of 3.40 x 10-2T at its center when a current of 12.0 A is passing through the coils. You want the resistance of the coil wire to be 5.80 N. The resistivity of the wire used is 1.70 x 10-8 N •m (at 20.0°C), and you are using a wire that has a cross sectional area of 3.14 × 10-8 m2. (Note that this solenoid may not necessarily be so tightly wound that the adjacent loops of wire will touch each other. Nonetheless, you may assume that it behaves like an ideal solenoid.) Determine the following. (a) number of turns needed on the solenoid turns (b) length of the solenoidarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON