College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A circular metallic disc is placed with its plane perpendicular to a uniform magnetic field of flux density B. The disc has a radius of 0.2 m and is rotated at 5 revolutions per second about an axis through its center perpendicular to its plane. The e.m.f between the center and the rim of the disc is balanced by the potential difference across a 10 Ω resistor when carrying a current of 1 mA. Calculate the magnitude of the magnetic field strength. Provide your answer in milliteslas (mT).
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For a particular scientific experiment, it is important to be completely isolated from any magnetic field, including the earth’s field. The earth’s field is approximately 50 μT, but at any particular location it may be a bit more or less than this. A 1.00-m-diameter current loop with 200 turns of wire is adjusted to carry a current of 0.215 A; at this current, the coil’s field at the center is exactly equal to the earth’s field in magnitude but opposite in direction, so that the total field at the center of the coil is zero. What is the strength of the earth’s magnetic field at this location?arrow_forwardA singly charged ion (an ion missing one electron) is injected perpendicular to a 0.205 T magnetic field with a velocity of 1250 m/s, and the ion moves in a circle of 22.7 mm radius. What is the molar mass of the ion in grams? (Remember to use grams and Avogadro's number to get molar mass. State the answer as an integer with no unit.) A Moving to another question will save this response. «>arrow_forwardThe figure below shows two wires carrying currents of I = 4.55 A in opposite directions, separated by a distance d. Assume d = 8.3 cm. (a)Find the magnitude (in µT) and direction of the net magnetic field at a point halfway between the wires. what is the magnitude µTdirection, (b)Find the magnitude (in µT) and direction of the net magnetic field at point P1, 8.3 cm to the right of the wire on the right. magnitude µTdirection, (c)Find the magnitude (in µT) and direction of the net magnetic field at point P2, 2d = 16.6 cm to the left of the wire on the left. magnitude µTdirection, (d) What If? Repeat parts (a) through (c) for the case where both wires carry currents in the same direction, upward in the figure.Find the magnitude (in µT) and direction of the net magnetic field at a point halfway between the wires. magnitude µTdirection, Find the magnitude (in µT) and direction of the net magnetic field at point P1, 8.3 cm to the right of the wire on the right. magnitude µTdirection, Find…arrow_forward
- Let the Figure represents a strip of an unknown metal of the same dimensions as those of the silver ribbon. When the magnetic field is 2.29 T and the current is 78.0 A, the Hall voltage is found to be 131 μV. Find the density of free electrons in the unknown metal?arrow_forwardPlease answer the question in the picture belowarrow_forwardThe Hall effect can be used to determine the density of mobile electrons in a conductor. A thin strip of the material being investigated is immersed in a magnetic field and oriented so that its surface is perpendicular to the field. In a particular measurement, the magnetic field strength was 0.735 T, the strip was 0.101 mm thick, the current along the strip was 2.95 A, and the Hall voltage between the strip's edges was 2.95 mV. Find the density n of mobile electrons in the material. The elementary charge is 1.602 x 10-19 C. 1.56 x104 n 3= -3 Incorrectarrow_forward
- An infinitely long conductive wire of radius a is inside an infinitely long and very thin sheath of radius b. Constant I current goes from the conductor wire and returns from the cylindrical sheath. The current density is assumed to be uniform at the wire and sheath. Write the expressions of the magnetic field that are valid inside the wire, between the wire and the sheath and outside the sheath.arrow_forwardAn electric current is flowing through a long cylindrical conductor with radius a = 0.75 m. The current density J = 9.5 A/m2 is uniform in the cylinder. In this problem we consider an imaginary cylinder with radius r around the axis AB. 1. For r = 0.5 a, calculate the numerical value of B in Tesla. 2. Express the magnitude of the magnetic field, B, at r > a in terms of I and r. 3. Express B in terms of J, a and r. 4. For r = 2 a, calculate the numerical value of B in Tesla.arrow_forwardA circular closed, conducting loop of radius r is in the presence of a uniform magnetic field that points into the page, shown in the figure below. The strength of the magnetic field changes as a function of time, which is described by the following expression: B(t) = B1t? + Bo. You may assume that B1 and Bo are both positive numbers. The direction of the magnetic field stays constant. The total resistance of the conducting loop is R. Use this information to solve parts (a) - (d). Write your answers in terms of known quantities such as: r, R, B1, Bo, and t. B(t) = B,t? + Bo %3D R r (a) Write an expression for the magnetic flux through the loop, assuming that the area vector of the loop points out of the page. Is the flux increasing or decreasing over time? (b) Determine the magnitude of the induced electromotive force driven through the loop. (c) Determine the magnitude of the induced current driven through the loop. (d) In which direction does the induced current flow (clockwise or…arrow_forward
- The uniform 30 mT magnetic field in figure points in the positive z-direction. An electron enters the region of magnetic field with a speed of 3.0 x 106 m/s and at an angle of = 30° above the ry-plane. Find the radius r and the pitch p of the electron's spiral trajectory. z 4 Varrow_forwardA cylindrical bar magnet of radius 1.00 cm and length 10.0 cm has a magnetic dipole moment of magnitude m = 2.00 A · m2. What is the magnetization M, assuming it to be uniform in the magnet? Answer in x10^4(A/m)arrow_forwardFor a research project, a student needs a solenoid that produces an interior magnetic field of 0.0400 T. She decides to use a current of 1.00 A and a wire 0.500 mm in diameter. She winds the solenoid in layers on an insulating form 1.00 cm in diameter and 18.0 cm long. Determine the number of layers of wire needed. (Round your answer up to the nearest integer.) layers Determine the total length of the wire. (Use the integer number of layers and the average layer diameter.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON