MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
1. A change of a dependent variable is all due to a manipulation of intended independent variables . Explain, with an example, why this statement can be inaccurate . Explain why cause of a regression model can also fail to discover a causal relationship
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- Describe a hypothetical study for which multiple regression with more than two predictor variables would be an appropriate analysis. Your description should include one dependent variable and three or more predictors.arrow_forwardA negative correlation between variables X and Y will always result in a positive slope in the linear regression model. Cannot tell from the given information. False Truearrow_forwardA county real estate appraiser wants to develop a statistical model to predict the appraised value of houses in a section of the county called East Meadow. One of the many variables thought to be an important predictor of appraised value is the number of rooms in the house. Consequently, the appraiser decided to fit the simple linear regression model, y = b₁x + bowhere y = appraised value of the house (in $thousands) and x = number of rooms. Using data collected for a sample of n=74 houses in East Meadow, the following results were obtained: y = 74.80 + 17.80x Give a practical interpretation of the estimate of the slope of the least squares line. For each additional room in the house, we estimate the appraised value to increase $74,800. For each additional dollar of appraised value, we estimate the number of rooms in the house to increase by 17.80 rooms. For a house with O rooms, we estimate the appraised value to be $74,800. For each additional room in the house, we estimate the…arrow_forward
- in multiple regression analysis, a residual is the difference between the value of a dependent variable and its corresponding independents variable value? True or false?arrow_forwardSuppose there is a significant correlation between two variables. Describe a case under which it might be inappropriate to use the linear regression equation for prediction.arrow_forward10) The following results are from a regression where the dependent variable is COST OF COLLEGE and the independent variables are TYPE OF SCHOOL which is a dummy variable = 0 for public schools and = 1 for private schools, FIRST QUARTILE SAT which is the average score of students in the top quartile of SAT’s, THIRD QUARTILE SAT which is the average score of students in the 3rd quartile, and ROOM AND BOARD which is the cost of room and board at the school. The first set of results includes all the independent variables whereas the second set of results excludes the THIRD QUARTILE SAT variable. a) Based on these two sets of data, does there appear that multicollinearity is a problem (specifically, does it appear that THIRD QUARTILE SAT is highly collinear with the other independent variables? Explain. b) Calculate the VIF for THIRD QUARTILE SAT. c) Based on the VIF, do you think that multicollinearity is a problem? Explain.arrow_forward
- If a regression line for two variables has a small positive slope, then the: variables are positively associated? variables are negatively associated? association of the variables cannot be determined. variables have no association with each other.arrow_forwardIf the Pearson correlation between X and Y is negative, then the regression equation will have a negative slope. true or falsearrow_forwardA 1 Demand 2 WN 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 7.38 8.51 9.52 7.50 9.33 8.28 8.75 7.87 7.10 8.00 7.89 8.15 9.10 8.86 8.90 8.87 9.26 9.00 8.75 7.95 7.65 7.27 8.00 8.50 8.75 9.21 8.27 7.67 7.93 9.26 B PriceDif -0.05 0.25 0.60 0.00 0.25 0.20 0.15 0.05 -0.15 0.15 0.20 0.10 0.40 0.45 0.35 0.30 0.50 0.50 0.40 -0.05 -0.05 -0.10 0.20 0.10 0.50 0.60 -0.05 0.00 0.05 0.55 Carrow_forward
- If the estimated intercept of the regression equation is negative, we can say the estimated correlation coefficient between the two variables is also negative. O True O Falsearrow_forwardA county real estate appraiser wants to develop a statistical model to predict the appraised value of houses in a section of the county called East Meadow. One of the many variables thought to be an important predictor of appraised value is the number of rooms in the house. Consequently, the appraiser decided to fit the simple linear regression model, y = b₁x + bowhere y = appraised value of the house (in $thousands) and x = number of rooms. Using data collected for a sample of n=74 houses in East Meadow, the following results were obtained: y=74.80+ 17.80x Give a practical interpretation of the estimate of the slope of the least squares line. For each additional room in the house, we estimate the appraised value to increase $74,800. 1000 For each additional dollar of appraised value, we estimate the number of rooms in the house to increase by 17.80 rooms. For a house with 0 rooms, we estimate the appraised value to be $74,800. For each additional room in the house, we estimate the…arrow_forwardWhich statement is not correct for multiple regression model? When we interpret this categorical variable, we would say the change we observe when one switches from the reference category to the specific category. The reference category will not be displayed in our model results. If we include a categorical variable with more than two values (e.g., religion) as an independent variable, we want to include a dummy variable for all categories except for two. We can include more than two categorical variables in the model. The value of the independent variable not included in the model is called "reference category."arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman