Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A certain part of stainless-steelpiping of a water distribution system involves a parallel section.Both parallel pipes have a diameter of 30 cm. One of the branches (pipe A) is 1500 m long while the other branch (pipe B) is 2500 m long. If the flow rate through pipe A is 0.4 and 0.31 m3/s, respectively. Pipe A has a half-way-closed gate valve (KL= 3)while pipe B has a fully open globe valve (KL= 9), and the other minor losses are negligible. Determine the mechanical power of pump for the system.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Hot oil is pumped through a heat exchanger (see figure below) at a flow rate of 0.5 L/s. An inlet manifold equally distributes the oil into 20 parallel, 5-mm-diameter copper tubes that are about 1 m in length. The oil cools down as it flows through the copper tubes. Oil then exits through an outlet manifold. The viscosity of the oil is 250 centipoise and its density is 950 kg/(m^3). Assuming uniform pressure in the manifolds and laminar flow through the tubes. calculate the total head loss (in meters) across those 20 copper tubes. COPPER TUBES MANIFOLDS Round your answer to 2 decimal places.arrow_forwardD ¶ L The water in a large tank exits through a horizontal circular pipe of diameter D=0.01m and length L=62m. The centre of the exit of the pipe is h=1.4m below the water surface. We can assume that the flow entrance to the pipe is smooth so that there are no minor losses. The flow in the pipe is laminar, the friction factor can be assumed constant and can be found from fp = 64/Rep where the Reynolds number is based on the pipe diameter and mean flow speed in the pipe. Taking frictional losses into account, solve the resulting quadratic equation to calculate the speed of the flow out of the pipe. Give your answer in m/s to 2 decimal places. Use: kinematic viscosity given by v=0.00000114 m²/s density of water given by 1000 kg/m³ acceleration due to gravity of 9.81 m/s²arrow_forwardWater flows through a pipe 5cm in diameter and 32m long between two tanks with a square-edged non-projecting entrance and exit. The flow rate is controlled by a gate valve which when fully open has a loss factor of 0.23. What is the height difference between the tanks if the volume flow rate is 4.2 x10-3 m^3/s? For laminar flow f=16/Re For turbulent flow f=0.08/Re^0.25 Density of water, rho, is 1000 kg/m^3, viscosity of water, mu , is 0.001Pa.s.arrow_forward
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY