A certain factory produces Xn specialized parts on day n, where Xn are independent and identically distributed random variables with mean 6 and variance 9. Let S be the total number of specialized parts produced from day 1 to day n. Using central limit theorem, determine the total number of parts, a, the said factory can guarantee to produce by day 50 with at least 99.9% certainty, i.e. determine the maximum value of a so that P(S50 ≥ a) ≥ 0.999. Note: This maximum value must be a whole number.
A certain factory produces Xn specialized parts on day n, where Xn are independent and identically distributed random variables with mean 6 and variance 9. Let S be the total number of specialized parts produced from day 1 to day n. Using central limit theorem, determine the total number of parts, a, the said factory can guarantee to produce by day 50 with at least 99.9% certainty, i.e. determine the maximum value of a so that P(S50 ≥ a) ≥ 0.999. Note: This maximum value must be a whole number.
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
The answer [235] is only PARTIALLY correct.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON