Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
A cast iron pipe is used to transfer steam with an inlet temperature of 300 C. Inner radius of the pipe is 15 cm. The thickness of the pipe (k=25 W/(mK)) is 0.7 cm and there is an insulation (k=0.05 W/mK) over the pipe with a thickness of 5 cm. Environmental temperature is -8 C. Determine the steady heat loss from the pipe if the steam convection coefficient is 80 W/(m^2K) and environment convection coefficient is 25 W/(m^2K)? Is insulation thickness enough?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- a 50cm diameter pipeline in the arctic carries hot oil where outer surface is maintained at 30C and is exposed to a surrounding temperature of -1x10^0 C. a special powder insulation 5cm thick surrounds the pipe and has a thermal conductivity of 7mW/mC. the convection heat transfer coefficient on the outside of the pipe is 9W/m^2C. estimate the energy loss from the pipe per meter of lenght.arrow_forwardA wood stove heats a small cabin with the following dimensions 8 m x 6 m x 3 m (length x width x height) to 25°C. Of the heat generated by burning wood, 60% is lost up the chimney. The cabin also loses heat through walls, ceiling and floor. Assume that all sides of the house except the floor are insulated with a 10 cm thick polyethylene foam layer having a thermal conductivity htc = 0.038 W/(m•°C). The heat loss through the floor is 1/5 of the heat loss through the ceiling. Outside air is at -5°C. a) How much heat is lost in total from the ceiling, walls, and floor? b) How many kg of wood per hour is needed as fuel for the cabin to maintain its temperature if heat value of wood is AH = 18,000 kJ/kg?arrow_forward= 31. A circular fin of diameter D = 0.25 inches and length L 4 inches transfers heat at a rate Q = 5.66 Btu/hr to air. The convective heat transfer coefficient is 3.62 Btu/hr-ft²- °F and the temperature difference between the fin-wall interface and the air is 100 °F. What is the thermal conductivity of the fin? What is the temperature of the fin tip?arrow_forward
- If hand written i'll upvote otherwise downvote?...arrow_forwardHeat mass transferarrow_forwardWater at an average temperature of 23 deg C flows through a 10-cm diameter pipe that is 2.5 m long. The pipe wall is heated by steam and is held at 100 deg C. The convective heat transfer coefficient is 2.25 x 10^4 W/m^2K. Find the heat flow in W.arrow_forward
- can you please please work it all outarrow_forwardYou are designing a 3m x 3m floor with radiant heating. The floor has 12 parallel pex pipes (k = 40 W/mK) of L = 3m, OD = 25mm and ID = 20mm. Hot water (TInfintiy 1 = 90oC, h = 200 W/m2K) runs through the pipes continuously. The surface below the pipes is perfectly insulated. Above the pipes, there is a 3mm layer of bonding material (? = 12 W/mK) and a 9mm layer of tile (k = 2 W/mK). Above the tile, there is air (TInfinity 2 = 25oC, h = 20 W/m2K). Properties of Air: k = 0.025 W/mK, Pr = 0.72, v = 1.847 x 10−5, u = 16.84 x 10−6, p = 1.2 kg/m3, B = 1/Tf (ideal gas), Hint: Assume that the “layer” of pipe starts at the center point (e.g. for conduction purposes, the pipe is OD divided by 2 thick). For convection, consider the entire pipe surface. a) What is the total heat rate entering the room above the floor? b) What is the temperature of the top of the tile?arrow_forwardA w=40 mm square computer CPU is air cooled with fans shown in the figure below. The surrounding air in the case has convection coefficient h = 100 W/m2⋅K and temperature T∞ = 30oC. If the aluminum heat sink (k = 230 W/m⋅K) on your computer has N = 20 exposed equally-spaced rectangular fins of thickness t =1 mm and length Lf = 15 mm: a) Calculate the overall efficiency ηo of the fins b) Given that the CPU is generating QCPU = 90 W, determine the temperature of the CPU, assuming the CPU is a uniform temperature and well-insulated on its sides. Ignore thermal contact resistance and fin array base resistancearrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY