College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
A car with a mass of 1850kg is traveling east with a speed of 8.5m/s. It collides head-on with a car with a mass of 2050kg traveling west with a speed of 5.5m/s. The cars stick together after the collision. What is the velocity (magnitude and direction) of the two cars after the collision?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Box 1 is sitting at rest. Box 2 is moving to the left when it collides elastically with Box 1 (see figure). The surface is frictionless. Take the right to be the positive x-direction.The mass of Box 1 is 4.00 kg. The mass of Box 2 is 7.00 kg. The speed of Box 2 is 1.40 m/s before the collision. The speed of Box 1 is 2.00 m/s after the collision.What is the velocity of Box 2 after the collision?arrow_forwardTwo cars collide at an intersection. Car A�, with a mass of 1900 kgkg , is going from west to east, while car B�, of mass 1300 kgkg , is going from north to south at 14.0 m/sm/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of 55.0 ∘∘ south of east from the point of impact.How fast were the enmeshed cars moving just after the collision?arrow_forwardA 0.19 kg arrow is shot at +42 m/s. It hits an apple (m = 0.62 kg), and goes through the apple, leaving with a velocity of +23 m/s.What is the velocity of the apple after the arrow leaves it?arrow_forward
- A 0.250 kg toy car moving with a speed of 0.820 m/s collides with a wall. The figure shows the force exerted on the car by the wall over the course of the collision. What is the magnitude of the velocity, or final speed, of the car after the collision?arrow_forwardA student is driving a 1200 kg car at 42.0 m/s. He is tail-gating ("drafting") behind a 2500 kg truck that is going 40.0 m/s in the same direction as the car. (DON'T EVER DO THIS! IT IS EXTREMELY DANGEROUS AND ILLEGAL) The car collides with the truck and the two vehicles are stuck together. How fast are they moving after the collision?arrow_forwardA 92 kg boulder , moving at 5.0 m/s attempts to pass directly across the adit of a mine. Just as the boulder reaches the end of the adit, it was met head-on in midair by two 75 kg miners, both moving in the direction opposite the boulder. One is moving 2.0 m/s, the other at 3.0 m/s . They all become entangled as one mass. What is their velocity after the collision? 18. What is the momentum of a 18 kg object traveling at a constant velocity that has 295 J of kinetic energy?arrow_forward
- A 0.250 kg toy car moving with a speed of 0.820 m/s collides with a wall. The figure shows the force exerted on the car by the wall over the course of the collision. What is the magnitude of the velocity, or final speed, of the car after the collision?arrow_forwardA toy car having mass m = 1.20 kg collides inelastically with a toy train of mass M = 3.95 kg. Before the collision, the toy train is moving in the positive x-direction with a velocity of Vi = 2.10 m/s and the toy car is also moving in the positive x-direction with a velocity of vi = 4.95 m/s. Immediately after the collision, the toy car is observed moving in the positive x-direction with a velocity of 1.90 m/s. (a) Determine Vf, the final velocity of the toy train. (b) Determine the change ΔKE in the total kinetic energy. Assume friction and the rotation of the wheels are not important so that they do not affect ΔKE.arrow_forwardA car, with a mass of 1240 kg, is moving towards an intersection at a velocity of 26.6 m/s towards the South. At the intersection, it collides with a truck that has a mass of 1580 kg and is moving with a velocity of 14.0 m/s towards the West. When they collide, the two vehicles stick together. 15. The magnitude of the final velocity for the car and truck is Answer to 3 significant digits. m/s. (Record your answer in the numerical-response section below.) Your answer:arrow_forward
- A 2.51 kg ball of clay is traveling straight north with a speed of 24.0 m/s, collides with a 3.55 kg ball of clay traveling straight east with a speed of 22.1 m/s. What is the speed of this new ball of clay after its collision? What direction is it traveling, given as a degree north of east?arrow_forwardBlocks A and B are moving toward each other on a horizontal, frictionless surface. Block A has a mass of 5 kg and a velocity of +40 m/s, while B has a mass of 10 kg and a velocity of -6 m/s. They suffer a head on, completely inelastic collision. What is the common speed of the blocks after the collision.arrow_forwardA 10.5-g bullet is fired into a stationary block of wood having mass m = 5.01 kg. The bullet imbeds into the block. The speed of the bullet-plus-wood combination immediately after the collision is 0.602 m/s. What was the original speed of the bullet? (Express your answer with four significant figures.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON