College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A bullet of mass 11.0 g is fired into an initially stationary block and comes to rest in the block. The block, of mass 1.05 kg, is subject to no horizontal external forces during the collision with the bullet. After the collision, the block is observed to move at a speed of 4.00 m/s.
(a) Find the initial speed of the bullet.
(b) How much kinetic energy is lost?
(b) How much kinetic energy is lost?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A railroad car of mass 2.25 ✕ 104 kg moving at 2.75 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s(b) How much kinetic energy is lost in the collision?arrow_forwardA railroad car of mass 2.55 104 kg is moving with a speed of 3.94 m/s. It collides and couples with three other coupled railroad cars, each of the same mass as the single car and moving in the same direction with an initial speed of 1.97 m/s. (a) What is the speed of the four cars after the collision? (Round your answer to at least two decimal places.) (b) How much mechanical energy is lost in the collision?arrow_forwardA bullet of mass 52 grams is fired horizontally into a 5.2 kg wooden block on a horizontalsurface. The coefficient of kinetic friction between the block and the surface is 0.52. Thebullet stops in the block which slides straight ahead for 5.2 meter. At what speed is thebullet fired?(Apply conservation of energy with frictionarrow_forward
- In a 100% inelastic one dimensional collision, where one mass (0.50 kg) is initially moving at 1.00 m/s [R] collides with a second mass (1.30 kg) initially at rest, which one of the following statements is true? The total kinetic energy before the collision is the same as the kinetic energy after the collision ) The total kinetic energy before the collision is less than the kinetic energy afte the collision The total initial momentum is greater than the total final momentum The total initial momentum is less than the total final momentum The total kinetic energy before the collision is greater than the total kinetic energy after the collisionarrow_forwardMarble A was released at a certain height of the ramp and hit Marble B on the horizontal end of the ramp. Both Marbles A and B weighs 5 grams. The horizontal distances covered by marbles A and B after the collision are 5 cm and 35 cm, respectively. The elevation from the edge of the ramp to the ground is 15cm. Assuming that energy and momentum are conserved, what is initial potential energy (in erg; erg = dyne.cm) of Marble A? Use g=980cm/s2. Round off your answer to two decimal places. Answer correctly, thank you.arrow_forwardProblem: You are lead engineer on the design of a crash test apparatus that verifies collisions of varying types. A m = 2 kg mass, when suspended above from a light-weight wire of L = 1.5 m, is first released at an angle of 90°, and correspondingly a height h = L. The tethered ball swings toward the waiting block of M = 4 kg. collides, then rebounds back to an angle of 0 = 32°. In this case, the collision between m and M is elastic, which prompts M's rightwards motion a distance of Ax = 2.1 m, from which the coefficient of kinetic friction between the block and surface on which it is slid is determined. m L h 0 Marrow_forward
- A bullet weighing 6.00 g is fired horizontally at a speed of 458 m/s into a wooden block weighing 1.00 kg. (Note: The block is resting on a frictionless horizontal surface). Find how fast the block will be moving if the bullet becomes embedded in the block and find out how much thermal energy was generated during the collision.arrow_forwardDoing some physics homework and am kind of stumped here!arrow_forwardA small block of mass m = 3.00 kg starts from rest and slides down a rough 30.0° incline from a height of h=3.60m. The coefficient of kinetic friction between the block and the incline is μk = 0.20. At the bottom it strikes a big block of mass M = 12.0kg, which is at rest on a horizontal frictionless surface. The collision is elastic.arrow_forward
- A railroad car of mass 3.05 ✕ 104 kg moving at 2.95 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s(b) How much kinetic energy is lost in the collision?arrow_forwardIn the figure here, a stationary block explodes into two pieces L and R that slide across a frictionless floor and then into regions with friction, where they stop. Piece L, with a mass of 3.3 kg, encounters a coefficient of kinetic friction HL = 0.52 and slides to a stop in distance di = 0.32 m. Piece R encounters a coefficient of kinetic friction µR = 0.49 and slides to a stop in distance dr = 0.49 m. What was %3D the mass of the block? -μ = 0 - dg-arrow_forwardA railroad car of mass 3.50 x 104 kg moving at 2:70 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? 3 m/s (b) How much kinetic energy is lost in the collision? Need Help? Read It Viewing Saved Work Revert to Last Responsearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON