College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
A box starts from rest and slides 40 m down a frictionless inclined plane. The total vertical displacement of the box is 20 m. How long does it take for the block to reach the end of the plane?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Using a simple pulley and rope system, a crewman on an Arctic expedition is trying to lower a crate of mass ?1=5.13 kg to the bottom of a steep ravine of height ?=22.5 m. The crewman of mass ?2=60.9 kg is walking while holding the rope, being careful to lower the crate at a constant speed of ?0=1.50 m/s. Unfortunately, when the crate reaches a point ℎ=12.5 m above the ground, the crewman steps on a slick patch of ice and slips. The crate immediately accelerates toward the ground, dragging the hapless crewman across the ice and toward the edge of the cliff. Assuming the ice is perfectly slick, so that there is no friction between the crewman and the ice once he slips and falls down, at what speed ?1 will the crate hit the ground? Assume also that the rope is long enough to allow the crate to hit the ground before the crewman slides over the side of the cliff, and that the pulley is frictionless. ?1=. m/s At what speed ?2 will the crewman hit the bottom of the ravine? Assume no…arrow_forwardA box with a mass of 7.24 kg is held at the top of frictionless inclined plane of length L = 10.9 m and an inclination angle 0 = 26.9 degrees above the horizontal. The box is released from rest and stops at a distanced = 22.62 m from the bottom of the inclined plane along the rough horizontal surface. What is the coefficient of kinetic friction between the box and the rough horizontal surface?arrow_forwardA boy shoves his stuffed toy zebra down a frictionless chute. It starts at a height of 1.63 m above the bottom of the chute with an initial speed of 1.41 m/s . The toy animal emerges horizontally from the bottom of the chute and continues sliding along a horizontal surface with a coefficient of kinetic friction of 0.273 . How far from the bottom of the chute does the toy zebra come to rest? Assume ?=9.81 m/s2 .arrow_forward
- A 2.1 x 10-kg car starts from rest at the top of a 5.8-m-long driveway that is inclined at 15° with the horizontal. If an average friction force of 4.0 x 103N impedes the motion, find the speed of the car at the bottom of the driveway. Enter a number. differs from the correct answer by more than 10%. Double check your calculations. m/s Need Help? Read Itarrow_forwardA 13.0kg stone slides down an icy, essentially frictionless, hill that is shown in the figure. At the top of the hill, the stone is moving at 1.75m/s down the hill. While the hill is frictionless, the stone experiences friction along the level, rough ground (beyond the base of the hill) all the way to a wall. The coefficients of static and kinetic friction are 0.800 and 0.300 respectively. The stone slides along the ground for 9.15m before making contact with a long spring, which has a spring constant of 25.0N/m. (“Long” in this case means that the spring is sufficiently long to stop the stone before it hits the wall.) Will the stone move again after it has been stopped by the spring?arrow_forwardA driver in a 1000.0kg car traveling at 28 m/s slams on the brakes and skids to a stop. If the coefficient of friction between the tires and the road is 0.80, how long will the skid marks be? O 50 m 63 m 40 m O 47 marrow_forward
- A student is skateboarding down a ramp that is 6.02 m long and inclined at 22.3° with respect to the horizontal. The initial speed of the skateboarder at the top of the ramp is 4.98 m/s. Neglect friction and find the speed at the bottom of the ramp.arrow_forwardA 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at 30.0° with the horizontal. The block slides some distance up the incline, stops turns around and slides back down to the bottom. When it reaches the bottom of the incline again, it is traveling with a speed of 3.80 m/s. If the coefficient of kinetic friction between the block and the plane is 0.500, how far up the incline did the block slide?arrow_forwarda tire swing is hanging from a rope of the length 5 meters long. It swings from an initial angle of 30 degrees relative to the vertical. The mass of the tire is 19k. what is the maximum tensionarrow_forward
- Your answer is partially correct. In the figure a block slides along a path that is without friction until the block reaches the section of length L = 0.66 m, which begins at height h = 1.1 m, on a ramp of angle 0 = 32°. In that section the coefficient of kinetic friction is 0.410. The block passes through point A with a speed of 8.4 m/s. If the block can reach point B (where the friction ends), what is its speed there, and if it cannot, what is its greatest height above A? Number i 8 6.46 Unit m/sarrow_forwardA block of mass m-0.5 kg starts to slide from rest at the top A of a curved track at a height h=4 m. There is no friction between the block and the track between points A and B. Then the block slides along the horizontal surface a distance d before coming to rest at C. The coefficient of kinetic friction on the horizontal surface between points B and C is u = 0.3 (g = 10 m/s2) 4.0 m C %3D 1- Calculate the total energy of the block at the point A 2- Determine the speed of the block at point B 3- Find the distance d between the points B and C.arrow_forwardA carousal has a radius R=7 m, with cables tying the seats being L=10 m long. What should be the speed of the seats so that the cables make an angle of A= 19 degrees with the vertical.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON