College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
A block of mass m1 = 14.5 kg slides along a horizontal surface (with friction, μk = 0.37) a distance d = 2.55 m before striking a second block of mass m2 = 8.25 kg. The first block has an initial velocity of v = 9.5 m/s.
Assuming that block one stops after it collides with block two, what is block two's velocity after impact in m/s?
How far does block two travel, d2 in meters, before coming to rest after the collision?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 1.90 kg box is moving to the right with speed 9.00 m/s on a horizontal, frictionless surface. At t = 0 a horizontal force is applied to the box. The force is directed to the left and has magnitude F(t)=( 6.00 N/s^2 )t2 If the force continues to be applied, what is the velocity of the box at 3.50 s?arrow_forwardA stationary soccer ball of mass m = 0.72 kg is kicked with a constant force of F = 29 N. The woman's foot is in contact with the ball for t = 0.24 s a) Write an expression for the speed of the ball, vi, as it leaves the woman's foot. (b) What is the velocity of the ball right after contact with the foot of the woman?arrow_forwardA 1500kg sport car is moving westbound at 20m/s on a level road when it collided with a 4000kg truck driving east on the same road at 15m/s. The two vehicles remain locked together after the collision. a)what are is the magnitude of the velocity of the two vehicles just after the collision?arrow_forward
- The Hulk (200kg of pure angry muscle)collides head-on with a truck (2500kg). If the Hulk was running at 10.0m/s and the truck was moving at 15.0 m/s in the opposite direction, after they stick together, what is their speed (in m/s)? Either the Hulk or the truck needs a negative initial velocity.arrow_forwardan iron ball with a mass of 67.5 kg is traveling with an initial velocity of 20.5 m/s. the ball is hit with a hammer, which remains in contact with the ball for 0.20 sec. how much force must the hammer hit the ball with to cause it to change directions?arrow_forwardA truck (M = 2500kg) collides with a car (m = 1000kg) at a 4-way intersection. Fortunately nobody gets hurt. Suppose the car is going north at 20m/s ( about 45mph) and the truck is coming from the east at 10m/s ( about 22mph). The car and truck stick together after the %3D collision. (a) Find the speed and direction of the car and truck immediately after the collision. (b) Approximately how much energy went into the deformation of the metal that caused the two vehicles to stick together? (c) What assumptions did you make? Thearrow_forward
- Calculate the distance traveled by the second cart during the 5.0 s interval after the collision.arrow_forward2.3. A train car is sitting on a level track when a second car moves in. The second car hits the first, their hitches engage, and they move together. Both cars have equal masses of about 120 000 kg, and the second car initially has a velocity of 1.5 m/s. (a) Draw a diagram that illustrates the situation and include an arrow representing the velocity vector of the second car and a separate arrow representing ĉ, the unit vector for the coordinate system along the tracks. (b) Write vector expressions for both the velocity and momentum of the second car using at least two forms of vector notation that have been covered in class. (c) Just before the collision, what is the velocity of the center of mass of the system that includes both cars? Again, express this as a vector. (d) Just before the collision, what is the total kinetic energy of the system that includes both cars?arrow_forwardBig Boris (90kg) skates backward, 1.0 meter ahead of small skater Sofia (45 kg) , holding her hand as they travel 3.0 "/s . At the 30-second mark, Boris starts pulling Sofia past him, so that by 32.0 s she is 1.0 m ahead of him. During that move, what was Sofia's average velocity, relative to Boris? -0.5 m/s -2.0 m/s +2.0 m/s -1.0 m/s +0.5 m/s +1.0 m/sarrow_forward
- An object has a velocity (4.69 m/s)i + (-4.4 m/s)j + (4.73 m/s)k. In a time of 5.5 s its velocity becomes (-2.22 m/s)i + (0.00 m/s)j + (4.73 m/s)k. 1) If the mass of the object is 3.31 kg, what is the magnitude of the net force on the object, in N, during the 5.5 s? Assume the acceleration is constant.arrow_forwardYesterday you saw in the news that the Giant Asian Murder Hornet has migrated to North America. You didn't think much about it until today when one of those suckers crashed at high speed into the screen door at the back of your house (splat!). The thing hit the door so hard that the door swung shut!We will assume that GAMH had a mass of m = 0.069 kg and was moving with an amazing velocity of v = 9.2 meters/second. The GAMH splatted a distance d = 0.65 meters from the hinge. The door itself can be treated as a rod of mass M = 0.955 kg with a length of L = 1.00 meters rotating about its end.Determine all the following:Write the FORMULA for the moment of inertia of the door without the hornet: I = kg m2Write the FORMULA for the moment of inertia of the door with the hornet: I = kg m2Determine the angular momentum of the hornet before it collides with the door Lhornet = kg m2/sDetermine the angular velocity of the hornet-stained door after the collision ?2 =…arrow_forwardIf you have a ball with a mass of 6.00kg, that has an initial velocity of vA=(2.00i + 5.00j)m/s and a final velocity of vB=(-2.00i + 8.00j)m/s, What is the change in velocity in unit vector format? a. -4.00i + 3.00j b. -2.83i + 3.61j c. 4.00i – 3.00j d. 0.00i + 13.0jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON