College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A block of mass 2.50 kg is pushed 2.20 m along a frictionless horizontal table by a constant 16.0-N force directed 25.0° below the horizontal. Determine the work done by (a) the applied force, (b) the normal force exerted by the table, (c) the force of gravity, and (d) the net force on the block.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cord is used to vertically lower an initially stationary block of mass M = 4.9 kg at a constant downward acceleration of g/7. When the block has fallen a distance d = 2.4 m, find (a) the work done by the cord's force on the block, (b) the work done by the gravitational force on the block, (c) the kinetic energy of the block, and (d) the speed of the block. (Note : Take the downward direction positive) (a) Number Units (b) Number Units (c) Number Units (d) Number Unitsarrow_forwardA small boat is crossing a pond on a windy day. During some interval of time, the boat undergoes the given displacement Ar: Ař = (3.50 m)i + (2.85 m)ĵ During the same interval of time, the wind exerts the given force F on the boat: F = (260 N) – (135 N)Ĵ (a) What is the total work done on the boat by the wind over this period of time? (b) What is the angle between the direction of the wind force and the direction of the boat's motion during this time interval?arrow_forwardA flashlight supported by a single cable descends a down a narrow tunnel and is gradually slowing down. There are only two forces acting on this flashlight (Ft and Fg). Which one of the following statements is true? The work done by the tension force is zero joules. b) The work done by the gravitational force is zero joules. c) The net work done by the two forces is zero joules. d) The magnitude of the work done by the gravitational force is larger than that done by the tension force. e) The magnitude of the work done by the tension force is larger than that done by the gravitational force. ‹arrow_forward
- A 17.9 kg block is dragged over a rough, horizontal surface by a constant force of 111 Nacting at an angle of angle 31.1◦above the horizontal. The block is displaced 60 m and the coefficient of kinetic friction is 0.152. Find the work done by the 111 N force. The acceleration of gravity is 9.8 m/s2.Answer in units of J. Find the magnitude of the work done by the force of friction.Answer in units of J What is the sign of the work done by the frictional force?1. positive2. negative3. zero Find the work done by the normal force.Answer in units of J What is the net work done on the block?Answer in units of J.arrow_forwardA 68.3-kg skier coasts up a snow-covered hill that makes an angle of 25.5 ° with the horizontal. The initial speed of the skier is 9.77 m/s. After coasting a distance of 1.45 m up the slope, the speed of the skier is 3.60 m/s. (a) Find the work done by the kinetic frictional force that acts on the skis. (b) What is the magnitude of the kinetic frictional force? (a) Number i (b) Number i Units Units 0arrow_forwardA horizontal force of 150 N is used to push a 40.0-kg packing crate a distance of 6.00 m on a rough horizontal surface. If the crate moves at constant speed, find (a) the work done by the150-N force and (b) the coefficient ofkinetic friction between the crate and surface.arrow_forward
- 24. (a) An object is pushed a distance 3.20 m along a frictionless horizontal table by a constant applied force of magnitude = 26.0 N directed at an angle of 25.0° below the horizontal as shown in Figure. If the mass (m) of the object is 2.50 kg calculate the work done by the applied force and power if it takes 2 minutes. d Answer: (i) The Work done by the applied force = J and (1) Power = Warrow_forwardA 42 kg box is being pushed a distance of 7.0 m across the floor by a force P whose magnitude is 155 N. The force P is parallel to the displacement of the box. The coefficient of kinetic friction is 0.25. Determine the work done on the box by each of the four forces that act on the box. Be sure to include the proper plus or minus sign for the work done by each force.applied force Jfrictional force Jnormal force Jgravity Jarrow_forwardA 59.0-kg box is being pushed a distance of 6.70 m across the floor by a force P whose magnitude is 186 N. The force P is parallel to the displacement of the box. The coefficient of kinetic friction is 0.239. Determine the work done on the box by each of the four forces that act on the box. Be sure to include the proper plus or minus sign for the work done by each force. (a) Wp = i (b) W = (c) Wmg= i (d) WN= iarrow_forward
- A cord is used to vertically lower an initially stationary block of mass M = 2.5 kg at a constant downward acceleration of g/6. When the block has fallen a distance d = 3.8 m, find (a) the work done by the cord's force on the block, (b) the work done by the gravitational force on the block, (c) the kinetic energy of the block, and (d) the speed of the block. (Note : Take the downward direction positive)arrow_forwardA block of mass m = 4.00 kg is pushed a distance d = 2.50 m along a frictionless horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle θ = 28.0° below the horizontal as shown in the figure below. (a)Determine the work done by the net force on the block.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON