College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A beam of white light goes from air into water at an incident angle of 77.5° with respect to the normal.
Part (a) At what angle (in degrees) is the red (660 nm) part of the light refracted?
Part (b) At what angle (in degrees) is the violet (410 nm) part of the light refracted?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of light moves through a slab of glass as shown in the figure. The index of refraction of the glass is ng = 1.5. The index of refraction of air is na = 1. The incident angle of the light is \theta i = 44\deg . Part (a) If the refraction angle of the light at the upper surface of the slab is \theta 1, express sin\theta 1 in terms of \theta i, na, and ng. Part (b) The incident angle of the light on the lower surface of the slab is \theta 2. What is the relation between \theta 1 and \theta 2? Part (c) The refraction angle of the light on the lower surface of the slab is \theta f. Express sin(\theta f) in terms of \theta 2, na, and ng.arrow_forwardThe critical angle for a beam of light passing from water into air is 47.6°. This means that all light rays with an angle of incidence in the water that is less than 47.6° will be totally absorbed by the water. not enough information to answer. partially reflected and partially refracted. O totally reflected. O totally refracted.arrow_forwardA beam of light is incident on a hemispherical prism at an angle, theta, as shown in the figure. If the index of refraction of the prism is 1.60, what is the critical angle (in degrees) for no transmitted light out of the bottom of the prism? Assume the index of refraction for air is 1.00 and the index of refraction for the water is 1.33.arrow_forward
- A beam of light in air is incident at an angle of 25° to the surface of a rectangular block of clear plastic( n=1.5).The light beam first passes through the block and reemerges from the opposite side into air, at what angle normal to that surface?arrow_forwardThe figure below shows the path of a beam of light through several layers with different indices of refraction. (Assume n = 1.02.) e₁ n = 1.60 02 n = 1.40 n = 1.20 MA (a) If ₁ = 28.0°, what is the angle 2 of the emerging beam? o 1 (b) What is the smallest incident angle ₁ to have total internal reflection at the surface between the medium with n = 1.20 and the medium with Па = 1.02?arrow_forwardThe figure below shows the path of a beam of light through several layers with different indices of refraction. (Assume n 1.08.) n = 1,60 n = 1.40 n = 1.20 (a) If 0, = 20.0°, what is the angle 0, of the emerging beam? (b) What is the smallest incident angle 0, to have total internal reflection at the surface between the medium with n = 1.20 and the medium with n. = 1.08?arrow_forward
- A ray of white light traveling through air enters a block of glass that has an index of refraction of 1.44 for the red end of the spectrum and 1.46 for the violet end. If the ray has an angle of incidence of 60.0 degrees with respect to the normal of the interface boundary, what's the angular separation between the red and violet ends of the spectrum within the glass?arrow_forwardA ray of light crosses the boundary between some substance with n = 1.54 and air, going from the substance into air. If the angle of incidence is 29◦ what is the angle of refraction? Calculate to 1decimal.arrow_forwardA thin beam of light makes an angle of 60° with the surface (not the normal) of a body of water (n = 1.33). Once the light beam refracts into the water what angle does the beam make with the surface of water? 30° 68° 22° 60°arrow_forward
- A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80°. What is the angular separation between the refracted red and refracted blue beams while they are in the glass? (The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.) 0.27° 0.33° 0.36° 0.46° 0.54°arrow_forwardWhite light strikes the left face of a 300-60°-90° glass prism along a normal to the surface (so there is no refraction there). The light moves horizontally through the prism and strikes the right face at an angle of 30.00° to the normal. As the light leaves the prism it is refracted at the right face. DO ALL CALCULATIONS TO 4 SIGNIFICANT FIGURES! What is the DIFFERENCE in the refracted angles for red light (ned = 1.567) and violet (niolet = 1.613)? Find (8, - e,), where e, and e, are the angles of refraction for violet and red light. 313 PMarrow_forwardThe figure below shows the path of a light beam through several slabs with different indices of refraction. (n4 = 1.01) 10% = n = 1.60 n = 1.40 n = 1.20 14 (a) If 01 35.0°, what is the angle 02 of the emerging beam? 63.12 X Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error.ºarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON