A bar is attached to the spring at the point C. The left end of the bar is pin supported and can rotates about the pin at Point A. The mass of the bar is m=20kg. The total length of the bar is LAB=3m and LAC=2m. Point A is 0.6 m below the ceiling. A clockwise constant couple moment M= 30Nm is applied on the bar so that the bar rotates from the horizontal position with θ=0° to the vertical position with θ=90°. The spring always maintains at the vertical position. The spring’s stiffness coefficient is k=30N/m and its unstretched length is 0.5 m. The acceleration due to gravity g=9.81 m/s2. During the process that the bar rotates from the horizontal position to the vertical position, determine the following. (2) ) the work done by the couple moment. __________(J) (two decimal places)
A bar is attached to the spring at the point C. The left end of the bar is pin supported and can rotates about the pin at Point A. The mass of the bar is m=20kg. The total length of the bar is LAB=3m and LAC=2m. Point A is 0.6 m below the ceiling. A clockwise constant couple moment M= 30Nm is applied on the bar so that the bar rotates from the horizontal position with θ=0° to the vertical position with θ=90°. The spring always maintains at the vertical position. The spring’s stiffness coefficient is k=30N/m and its unstretched length is 0.5 m. The acceleration due to gravity g=9.81 m/s2. During the process that the bar rotates from the horizontal position to the vertical position, determine the following.
(2) ) the work done by the couple moment. __________(J) (two decimal places)
Step by step
Solved in 2 steps with 2 images