Question
thumb_up100%
(a) An electron with initial kinetic energy 32 eV encounters a square barrier with height 41 eV and width 0.25 nm. What is the probability that the electron will tunnel through the barrier? (b) A proton with the same kinetic energy encounters the same barrier. What is the probability that the proton will tunnel through the barrier?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps
Knowledge Booster
Similar questions
- = = An electron having total energy E 4.60 eV approaches a rectangular energy barrier with U■5.10 eV and L-950 pm as shown in the figure below. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero. Energy E U 0 i (a) Calculate this probability, which is the transmission coefficient. (Use 9.11 x 10-31 kg for the mass of an electron, 1.055 x 10-34] s for h, and note that there are 1.60 x 10-19 J per eV.) (b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.60-eV electron tunneling through the barrier to be one in one million? nmarrow_forwardThe wavefunction for a quantum particle tunnelling through a potential barrier of thickness L has the form ψ(x) = Ae−Cx in the classically forbidden region where A is a constant and C is given by C^2 = 2m(U − E) /h_bar^2 . (a) Show that this wavefunction is a solution to Schrodinger’s Equation. (b) Why is the probability of tunneling through the barrier proportional to e ^−2CL?arrow_forward