College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A 40 g block of ice is cooled to -76°C and is then added to 610 g of water in an 80 g copper calorimeter at a temperature of 27°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. Remember that the ice must first warm to 0°C, melt, and then continue warming as water. The specific heat of ice is 0.500 cal/g ·°C = 2090 J/kg°C.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Following vigorous exercise, the internal body temperature of a 72.5-kg person is 40.0°C. At what rate, in watts, must the person transfer thermal energy to reduce the body temperature to 37.0°C in 30.0 min, assuming the body continues to produce energy at the rate of 150 W?arrow_forwardA sample of 5.25 kilograms of water at 6.00°C is placed in the freezer. Assuming all energy removed from the freezer is removed from the water, how long does the 1/5 horsepower (HP) motor (1 HP = 746 Watts) have to run to cool all of the liquid to ice at 0.00°C? The freezer has a COP of 5.00.arrow_forwardA 283 g silver figure of a polar bear is dropped into the 249 g aluminum cup of a well-insulated calorimeter containing 265 g of liquid water at 20.9°C. The bear's initial temperature is 98.5°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/ (kg-K), 910 J/ (kg-K), and 4190 J/ (kg-K). final temperature: °Carrow_forward
- A block of iron (c=448.00 J/kj°C) initially at temperature 6.00°C is dropped into an insulated container filled with 15.71kg of water ( cwater=4186.00 J/kg°C) at 93.00°C. They come to equilibrium at a final temperature of 39.00°C. Determine the mass of the iron block. _____kg Determine the magnitude of thermal energy Q transferred between the two substances. ______kJarrow_forwardTo treat a burn on his hand, a person decides to place an ice cube on the burned skin. The mass of the ice cube is 16.8 g, and its initial temperature is -10.7 °C. The water resulting from the melted ice reaches the temperature of his skin, 29.4 'C. How much heat is absorbed by the ice cube and resulting water? Assume that all of the water remains in the hand. Constants for water can be found in this table.arrow_forwardLiquid nitrogen is often used as an effective coolant, as its boiling temperature is 77.0 K. A 0.750 kg block of iron with an initial temperature of 313.27 K is immersed in an insulated bath of liquid nitrogen with an initial temperature of 77.0 K. After the iron and the liquid nitrogen reach a state of thermal equilibrium, the iron block has cooled to a final a temperature of 77.0 K, and 198 g of liquid nitrogen has boiled off (vaporized). Assuming that the specific heat of iron over this temperature range is is 285 J/kg·K, What is the latent heat of vaporization of liquid nitrogen?arrow_forward
- An unknown substance has a mass of 0.250 kg and an initial temperature of 90.0°C. The substance is then dropped into a calorimeter made of aluminum containing 0.300 kg of water initially at 25.0°C (assume the water and calorimeter start in thermal equilibrium). The mass of the aluminum container is 0.200 kg, and the temperature of the calorimeter increases to a final equilibrium temperature of 32.0°C. Assuming no thermal energy is transferred to the environment, calculate the specific heat of the unknown substance. The specific heat of water is 4186 J/(K*mol) and aluminum is 900 J/(K*mol).arrow_forwardA 155 g copper bowl contains 230 g of water, both at 20.0°C. A very hot 300 g copper cylinder is dropped into the water, causing the water to boil, with 4.05 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy (in calories) is transferred to the water as heat? 8.6 X kcal (b) How much energy (in calories) is transferred to the bowl? 55 X kcal (c) What is the original temperature of the cylinder? 553.6 X °C Did you use the idea of conservation of energy? That is, did you equate the sum of the energy transfers to zero? For the bowl and cylinder, did you substitute the expression relating an energy transfer, the specific heat, the mass, and the temperature change? For the water, did you use the same expression to get the water to the boiling point? Did you also include an expression for the heat of vaporization? Did you use the given final temperature for each of the three materials?arrow_forwardA 40-g block of ice is cooled to −69°C and is then added to 650 g of water in an 80-g copper calorimeter at a temperature of 23°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C = 2,090 J/kg · °C.) Tf = __ °C My answer of 33°C was incorrect.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON