College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A 4.30 nC charge is located at the origin. What is the electric field at (x, y) = (6.30 cm, 7.00 cm)?
(4.00×103 N/C) î + (2.92×103 N/C) ĵ
(2.92×103 N/C) î + (3.24×103 N/C) ĵ
(2.59×1012 N/C) î + (2.87×1012 N/C) ĵ
(4.36×103 N/C) î
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electric field 25.0 cm away from a very long uniform line of charge is 620 N/C. What is the uniform charge density of this very long line? (so = 8.85 x 10-12 c²/Nm², k = 9.00 x 10⁹ Nm²/C²) 4.31 x 10-6 C/m 3.49 x 1011 C/m 8.62 x 10-9 C/m 8.62 x 10-6 C/m 3.49 x 107 C/m 4.31 x 10-9 C/marrow_forwardThree charges are placed along the x-axis: q1 = 3.00 µC at X1 = -20.0 cm, q2 = -5.00 µC at x2 = 10.0 cm, and q3 = 6.00 µC at x3 = 25.00 cm. Determine the magnitude of the electric field at the origin. O 4 69x106 N/C O 2 96x106 N/C O 6 04x106 N/C O 4.31x106 N/Carrow_forwardA metal sphere of radius 10 cm carries a charge of +2.0 micro C. What is the magnitude of the electric field 5.0 cm from the sphere's surfacearrow_forward
- Problem 6: A positive charge of magnitude Q; = 0.45 nC is located at the origin. A negative charge Q2 = -3.5 nC is located on the positive x-axis at x = 12 cm from the origin. The point Pis located y = 18 cm above charge Q2. y R Q2 X ©theexpertta.com Part (a) Calculate the x-component of the electric field at point P due to charge Qj. Write your answer in units of N/C. Ex 1 =arrow_forward2 narrow, flat metal plates are positioned vertically, 20.00 cm. The first plate has a positive charge with charge density σ=+630.0 mC/m2 and a second plate has an equal but opposite negative charge with charge density σ=-6300.0 mC/m2 . There are also two narrow, flat metal plates positioned horizontally, 30.00 cm apart, with the top plate given a negative charge, and the bottom plate given an equal but opposite positive charge, such that the electric potential of the bottom plate is 5.00 V higher than the top plate. A small sphere with a mass of m =64.35 g, and a charge of q =22.00 mC is attached to a narrow, stiff, massless, insulating rod with a length of L= 8.00 cm, which is pivoted at point O, which is 2.000 cm from the second plate. The sphere/rod unit is angled at 5 degrees with horizontal and released from rest. Will the sphere/rod ever hit an angle of 0 degrees with the horizontal? If so, how long will it take to reach that point?arrow_forwardA charge of -8.5 μC is at x = 0 and a charge of -4.0 μC is at x = 6.0 cm. What is the electric field at x = 2.0 cm? Specify the direction with the sign of your answer. 1.7 x 108 V/m -2.9 x 106 V/m -2.1 x 108 V/m -1.7 x 108 V/m 2.1 x 108 V/marrow_forward
- What should be the direction and magnitude of the vertical electric field that will balance the weight of a plastic sphere with the charge Q= +1.5 nC and mass m= 1.8 g? 3.2 x 10^5 N/C positive y-direction 1.2 x 10^6 N/C in +y-direction 1.2 x 10^6 N/C in negative y-direction 3.2 x 10^5 N/C in negative y-directionarrow_forwardA charged 3.60 g glass bead hangs suspended in the air by an electric field. If the bead was charged by the removal of 7.10×1010 electrons, what must the electric field magnitude be? 2.56×1011 N/C 3.11×106 N/C 4.97×10-13 N/C 3.17×108 N/Carrow_forwardA spherical conductor of radius 4.07 mm carries a total charge of 6.23 nC. What is the magnitude of the electric field at a distance of 7.09 mm from the center of the sphere? (k = 1/(4л) = 8.99 × 10⁹ N-m²/C²)arrow_forward
- A force of (6.72x10^0) N is exerted on a (8.0540x10^O) µC charge. What is the magnitude of the electric field at this point? Give your answer in N/C, using 3 sf. Note: Your answer is assumed to be reduced to the highest power possible. Your Answer: x10 Answerarrow_forwardA solid metal sphere of radius 3.50 m carries a total charge of -6.10 μC . Need help with part F A. What is the magnitude of the electric field at a distance from the sphere's center of 0.350 m ? |E1| = 0 N/C B. What is the magnitude of the electric field at a distance from the sphere's center of 3.45 m ? |E2| = 0 N/C C. What is the magnitude of the electric field at a distance from the sphere's center of 3.65 m ? |E3| = 4120 N/C d. What is the magnitude of the electric field at a distance from the sphere's center of 6.00 m ? |E4| = 1520 N/C E. How would the answers differ if the sphere was a thin shell? Enter your answers numerically separated by commas. |E1|, |E2|, |E3|, |E4| = 0,0,4120,1520 N/C F. How would the answers differ if the sphere was a solid nonconductor uniformly charged throughout? Enter your answers numerically separated by commas. |E1|, |E2|, |E3|, |E4|arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON