
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
![A 4-pole, d.c. generator has a wave-wound armature with 792 conductors. The flux per pole is
[751.3 r.p.m.]
1.
0.0121 Wb. Determine the speed at which it should be run to generate 240 V on no-load.
2. A 20 kW compound generator works on full-load with a terminal voltage of 230 V. The armature,
series and shunt field resistances are 0.1, 0.05 and 115 Q2 respectively. Calculate the generated e.m.f. when
the generator is connected short-shunt.
[243.25 V] (Elect. Engg. Madras Univ. April, 1978)
3. A d.c. generator generates an e.m.f. of 520 V. It has 2,000 armature conductors, flux per pole of
0.013 Wb, speed of 1200 r.p.m. and the armature winding has four parallel paths. Find the number of poles.
[4] (Elect. Technology, Aligarh Univ. 1978)
When driven at 1000 r.p.m. with a flux per pole of 0.02 Wb, a d.c. generator has an e.m.f. of 200 V.
If the speed is increased to 1100 r.p.m. and at the same time the flux per pole is reduced to 0.019 Wb per pole,
[209 V]
4.
what is then the induced e.m.f. ?](https://content.bartleby.com/qna-images/question/260dc05b-46c1-4d95-903d-02285d18207c/cfefffff-d845-4ed8-bb6f-723e6989a49a/kx747y_thumbnail.png)
Transcribed Image Text:A 4-pole, d.c. generator has a wave-wound armature with 792 conductors. The flux per pole is
[751.3 r.p.m.]
1.
0.0121 Wb. Determine the speed at which it should be run to generate 240 V on no-load.
2. A 20 kW compound generator works on full-load with a terminal voltage of 230 V. The armature,
series and shunt field resistances are 0.1, 0.05 and 115 Q2 respectively. Calculate the generated e.m.f. when
the generator is connected short-shunt.
[243.25 V] (Elect. Engg. Madras Univ. April, 1978)
3. A d.c. generator generates an e.m.f. of 520 V. It has 2,000 armature conductors, flux per pole of
0.013 Wb, speed of 1200 r.p.m. and the armature winding has four parallel paths. Find the number of poles.
[4] (Elect. Technology, Aligarh Univ. 1978)
When driven at 1000 r.p.m. with a flux per pole of 0.02 Wb, a d.c. generator has an e.m.f. of 200 V.
If the speed is increased to 1100 r.p.m. and at the same time the flux per pole is reduced to 0.019 Wb per pole,
[209 V]
4.
what is then the induced e.m.f. ?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images

Knowledge Booster
Similar questions
- The shaft of a three-phase synchronous generator is rotating at 3000 RPM. This generator is inducing a torque of 100.0 N.m under a certain load. If the copper losses are neglected, and the sum Praw + Pcore + Pstray = 7854 Watt, find the efficiency of the generator under those conditions. Answer: The % efficiency is:arrow_forward12. An average voltage of 20 V is induced in a 500-turn solenoid as a result a change of flu which occurs in 0.5 second. Determine the total flux change.arrow_forward
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,