Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question
A 4-pole, d.c. generator has a wave-wound armature with 792 conductors. The flux per pole is
[751.3 r.p.m.]
1.
0.0121 Wb. Determine the speed at which it should be run to generate 240 V on no-load.
2. A 20 kW compound generator works on full-load with a terminal voltage of 230 V. The armature,
series and shunt field resistances are 0.1, 0.05 and 115 Q2 respectively. Calculate the generated e.m.f. when
the generator is connected short-shunt.
[243.25 V] (Elect. Engg. Madras Univ. April, 1978)
3. A d.c. generator generates an e.m.f. of 520 V. It has 2,000 armature conductors, flux per pole of
0.013 Wb, speed of 1200 r.p.m. and the armature winding has four parallel paths. Find the number of poles.
[4] (Elect. Technology, Aligarh Univ. 1978)
When driven at 1000 r.p.m. with a flux per pole of 0.02 Wb, a d.c. generator has an e.m.f. of 200 V.
If the speed is increased to 1100 r.p.m. and at the same time the flux per pole is reduced to 0.019 Wb per pole,
[209 V]
4.
what is then the induced e.m.f. ?
expand button
Transcribed Image Text:A 4-pole, d.c. generator has a wave-wound armature with 792 conductors. The flux per pole is [751.3 r.p.m.] 1. 0.0121 Wb. Determine the speed at which it should be run to generate 240 V on no-load. 2. A 20 kW compound generator works on full-load with a terminal voltage of 230 V. The armature, series and shunt field resistances are 0.1, 0.05 and 115 Q2 respectively. Calculate the generated e.m.f. when the generator is connected short-shunt. [243.25 V] (Elect. Engg. Madras Univ. April, 1978) 3. A d.c. generator generates an e.m.f. of 520 V. It has 2,000 armature conductors, flux per pole of 0.013 Wb, speed of 1200 r.p.m. and the armature winding has four parallel paths. Find the number of poles. [4] (Elect. Technology, Aligarh Univ. 1978) When driven at 1000 r.p.m. with a flux per pole of 0.02 Wb, a d.c. generator has an e.m.f. of 200 V. If the speed is increased to 1100 r.p.m. and at the same time the flux per pole is reduced to 0.019 Wb per pole, [209 V] 4. what is then the induced e.m.f. ?
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,