
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question

Transcribed Image Text:#57
A 390 kg crate hangs from the end of a rope of length L =14.0m. You push
horizontally on the crate with a varying force F to move it a horizontal
distance d =3.90 m to the side. Find the work your force F does on the
crate in Joules.
L
d

Transcribed Image Text:#57, (e)
Referring to the previous question, #57:
You can find the magnitude of your force when the crate reaches its final
position (shown in the diagram for #57) by noting that the net force in the
horizontal direction will be zero, then finding the tension in the rope by
considering that the net force in the vertical direction will also be zero.
Why is the work of your force not equal to the product of the horizontal
displacement and the magnitude of your force when the crate reaches its
fınal position?
The block does not travel only in the horizontal direction.
The force F is not constant in magnitude.
The force is not constant in direction.
The work of your force is equal to the product of the horizontal displacement and
the magnitude of your force when the crate reaches its final position.
Expert Solution

arrow_forward
Step 1
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You drop a 2.50 kg book to a friend who stands on the ground at distance D-13.0 m below. If your friend's outstretched hands are at distance d-1.60 m above the ground (see the figure), (a) how much work W, does the gravitational force do on the book as it drops to her hands? (b) What is the change AU in the gravitational potential energy of the book-Earth system during the drop? If the gravitational potential energy U of that system is taken to be zero at ground level, what is U (c) when the book is released and (d) when it reaches her hands? Now take U to be 100 J at ground level and again find (e) W. (f) AU, (g) U at the release point, and (h) U at her hands. 10000 Elarrow_forwardA 68.3-kg skier coasts up a snow-covered hill that makes an angle of 25.5 ° with the horizontal. The initial speed of the skier is 9.77 m/s. After coasting a distance of 1.45 m up the slope, the speed of the skier is 3.60 m/s. (a) Find the work done by the kinetic frictional force that acts on the skis. (b) What is the magnitude of the kinetic frictional force? (a) Number i (b) Number i Units Units 0arrow_forwardA 50 N force is applied at an angle to the side of a box causing it to slide across a floor. The total work done to move the box 10m is 150 J (joules). A) what is the angle at which the force was applied? B) if the box has a weight of 735 N, what is the mass of the box?arrow_forward
- A horizontal force of 150 N is used to push a 40.0-kg packing crate a distance of 6.00 m on a rough horizontal surface. If the crate moves at constant speed, find (a) the work done by the150-N force and (b) the coefficient ofkinetic friction between the crate and surface.arrow_forwardA man cleaning a floor pulls a vacuum cleaner with a force of magnitude 50.0 N at an angle of 20 degrees from the positive x axis. Calculate the work done by the man s force on the vacuum cleaner as the vacuum cleaner is displaced 3.00 m to the right?arrow_forwardA can of beans that has mass M is launched by a springpowered device from level ground. The can is launched at an angle of a0 above the horizontal and is in the air for time T before it returns to the ground. Air resistance can be neglected. (a) How much work was done on the can by the launching device? (b) How much work is done on the can if it is launched at the same angle a0 but stays in the air twice as long? How does your result compare to the answer to part (a)?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON