Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A 20 kW shunt machine having an Armature circuit Resistance of 0.5 Ω and a filed resistance of 120Ω,
generates a terminal voltage of 240 V at full load. Find the Efficiency When act as a Generator at full load and act as a Generator at half load and act as a Motor Assume the Iron, Friction and Windage losses are 0.8 kW.
I need all steps and draw for it .
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A simple generator has a square armature 9.0 cm on a side. The armature has 80 turns of 0.59-mm-diameter copper wire and rotates in a 0.700-T magnetic field. The generator is used to power a lightbulb rated at 12.0 V and 25.0 W. Part A At what rate should the generator rotate to provide 12.0 V to the bulb? Consider the resistance of the wire on the armature. Express your answer to two significant figures and include the appropriate units. HA ? f = Value Unitsarrow_forwardQ3: A universal fractional horsepower series motor has a resistance of 30 22 and a total inductance of 0.5 H. When connected to a 250 V d.c. supply and loaded to take 0.8 A, it runs at 2000 r.p.m. Estimate the speed and p.f. when connected to a 250 V a.c. supply and loaded to the same current.arrow_forwardDc generatorarrow_forward
- The field winding of a d.c. motor is connected to a 110V supply. At a temperature of 18°C, the current drawn is 0.575 A. After running the machine for some time the current has fallen to 0.475 A, the voltage remaining unchanged. Calculate the temperature of the winding under the new conditions, assuming that the temperature coefficient of resistance of copper is 0.004 26/°C at 0°C.arrow_forwardMachine problemarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,