
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A 2.00-m length of wire is held in an east−west direction and moves horizontally to the north with a speed of 15.0 m/s. The vertical component of Earth’s magnetic field in this region is 40.0 μT directed downward. Calculate the induced emf between the ends of the wire and determine which end is positive.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A neurologist is using a device, with a thin circular coil of current-carrying wire of radius 2.0 mm, to stimulate neurons in a patient's brain. The coil is placed directly against the patient's skull, and everywhere within the area of the coil, the magnetic field changes from zero to 1.10 T (perpendicular to the plane of the coil) in 100 ms. What is the magnitude of the average emf induced around the circumference of this circular area in the brain? Express your answer in units of mV.arrow_forwardPlease give me correct answer and square the answer.arrow_forwardA circular coil (670 turns, radius = 0.079 m) is rotating in a uniform magnetic field. At t = 0 s, the normal to the coil is perpendicular to the magnetic field. At t = 0.020 s, the normal makes an angle of 45 degrees with the field because the coil has made one-eighth of a revolution. An average emf of magnitude 0.052 V is induced in the coil. Find the magnitude of the magnetic field at the location of the coil.arrow_forward
- A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.87 V and a current of 3.8 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are induced in the square coil? (a) Number Mi Units (b) Number eTextbook and Media Hint Unitsarrow_forwardA flat circular coil with 153 turns, a radius of 2.46 x 10-² m, and a resistance of 0.597 £ is exposed to an external magnetic field that is directed perpendicular to the plane of the coil. The magnitude of the external magnetic field is changing at a rate of AB/At = 0.743 T/s, thereby inducing a current in the coil. Find the magnitude of the magnetic field at the center of the coil that is produced by the induced current. Number i Unitsarrow_forwardA magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.87 V and a current of 4.7 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are induced in the square coil? (a) Number i Units (b) Number i Units >arrow_forward
- A conducting coil of 1900 turns is connected to a galvanometer, and the total resistance of the circuit is 30 2. The area of each turn is 4.00 x 10-4 m². This coil is moved from a region where the magnetic field is zero into a region where it is nonzero, the normal to the coil being kept parallel to the magnetic field. The amount of charge that is induced to flow around the circuit is measured to be 7.5 × 10-³ C. Find the magnitude of the magnetic field. Number i 0.29 Units Tarrow_forwardAsaparrow_forwardA magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.22 V and a current of 4.3 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are induced in the square coil? (a) Number i (b) Number i Units Unitsarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON