College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
A 2.00 kg aluminum block and a 6.00 kg copper block are connected by a light string over a frictionless pulley. The two blocks are allowed to move on a fixed steel block wedge (of angle θ=30.0∘θ=30.0∘) with the aluminum block on the flat of the wedge and the copper block on the angled part. Determine (a) the acceleration of the two blocks and (b) the tension in the string.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A m1 = 1.50-kg aluminum block and a m2 = 6.10-kg copper block are connected by a light string over a frictionless pulley. The two blocks are allowed to move on a fixed steel block wedge (of angle θ = 32.0°) as shown in the figure. (For aluminum on steel, μs = 0.61 and μk = 0.47. For copper on steel, μs = 0.53 and μk = 0.36.)arrow_forwardA 4.15 kg4.15 kg box is suspended from a system of massless wires attached to a ceiling. The first wire makes an angle of ?1=63.0∘θ1=63.0∘ with the ceiling, whereas the second wire makes an angle of ?2=41.5∘θ2=41.5∘ with the ceiling. Determine the magnitudes of the tensions in the first and second wires, ?1T1 and ?2,T2, respectively.arrow_forwardIn the figure, a rectangular slab of slate rests on a bedrock surface inclined at angle 8 = 22.8°. The slab has length L = 48.9 m, thickness T = 6.61 m, and width W = 12.7 m, and 1.0 cm³ of it has a mass of 3.2 g. The coefficient of static friction between slab and bedrock is 0.312. (a) Calculate the component of the gravitational force on the slab parallel to the bedrock surface. (b) Calculate the magnitude of the static frictional force on the slab. By comparing (a) and (b), you can see that the slab is in danger of sliding. This is prevented only by chance protrusions of bedrock. (c) To stabilize the slab, bolts are to be driven perpendicular to the bedrock surface (two bolts are shown). If each bolt has a cross-sectional area of 6.47 cm² and will snap under a shearing stress of 3.59 x 108 N/m², what is the minimum number of bolts needed? Assume that the bolts do not affect the normal force.arrow_forward
- The crate A weighs 780 lb. Between all contacting surfaces, μs = 0.34 and μk = 0.29. Neglect the weights of the wedges. What force F is required to move A to the right at a constant rate? Wedge angle is 6 degrees.arrow_forwardMass m, = 13.7 kg is on a horizontal surface. Mass m, = 7.49 kg hangs freely on a rope which is attached to the first mass. The coefficient of static friction between m, and the horizontal surface is µs = 0.618, while the coefficient of kinetic friction is µk = 0.121. m1 m2 If the system is in motion with m, moving to the left, then what will be the magnitude of the system's acceleration? Consider the pulley to be massless and frictionless. Submit Answer Incorrect. Tries 2/10 Previous Triesarrow_forwardIn the figure, a rectangular slab of slate rests on a bedrock surface inclined at angle θ = 28.4°. The slab has length L = 32.4 m, thickness T = 5.92 m, and width W = 14.3 m, and 1.0 cm3 of it has a mass of 3.2 g. The coefficient of static friction between slab and bedrock is 0.385. (a) Calculate the component of the gravitational force on the slab parallel to the bedrock surface. (b) Calculate the magnitude of the static frictional force on the slab. By comparing (a) and (b), you can see that the slab is in danger of sliding. This is prevented only by chance protrusions of bedrock. (c) To stabilize the slab, bolts are to be driven perpendicular to the bedrock surface (two bolts are shown). If each bolt has a cross-sectional area of 6.05 cm2 and will snap under a shearing stress of 3.34 × 108 N/m2, what is the minimum number of bolts needed? Assume that the bolts do not affect the normal force.arrow_forward
- A car of mass m₁ 1000 kg is connected to a trailer of mass m2 = 400 kg by a taut inextensible cable. The car's engine provides a constant forward driving force Fx = 7000 N, which causes the car-plus-trailer to accelerate forwards along the horizontal x-axis. The tension of the cable produces a force on the trailer and also a force on the car. You may assume that the magnitude of the two forces is the same. You may also ignore friction. What is the tension in the cable joining the car to the trailer? Give your answer by entering a number, correct to an appropriate number of significant figures, in the empty box below.arrow_forwardA sailor is being rescued using a boatswain’s chair that is suspended from a pulley that can roll freely on the support cable ACB and is pulled at a constant speed by cable CD . Knowing that a = 30° and β = 10° and that the combined weight of the boatswain’s chair and the sailor is 200 lb, determine the tension (a) in the support cable ACB, (b) in the traction cable CD.arrow_forwardA 1.20 kg object is subjected to three forces that give it an acceleration à = (4.80 m/s² )î + (5.00 m/s²). If two of the three forces are F₁ = (28.0 N )i + (11.0 N ) and F₂ = (15.0 N )i + (8.00 N )ĵ, find (a) the x component and (b) the y component of the the third force.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON