College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You stand on a frictional platform that is rotating at 1.6 rev/s. Your arms are outstretched, and you hold a heavy weight in each hand. The moment of inertia of you, the extended weights, and the platform is 7.9 kg · m2. When you pull the weights in toward your body, the moment of inertia decreases to 3.7 kg · m2. (a) What is the resulting angular speed of the platform?(b) What is the change in kinetic energy of the system?(c) Where did this increase in energy come from? (Select all that apply.) -your internal energy -gravity -kinetic energy of the platform -mass of the weights -air resistancearrow_forwardA playground merry-go-round has radius 2.40 m and moment of inertia 2100 kg . m2 about a vertical axle through its center, and it turns with negligible friction. (a) A child applies an 18.0 N force tangentially to the edge of the merry-go-round for 15.0 s. If the merrygo- round is initially at rest, what is its angular speed after this 15.0 s interval? (b) How much work did the child do on the merry-go-round? (c) What is the average power supplied by the child?arrow_forwardA cord is wrapped around the rim of a wheel 0.300 m in radius, and a steady pull of 38.5 NN is exerted on the cord. The wheel is mounted on frictionless bearings on a horizontal shaft through its center. The moment of inertia of the wheel about this shaft is 5.35 kg⋅m2 Compute the angular acceleration of the wheel.arrow_forward
- A steel disc with a mass of 1.505 kg and a diameter of 8.00 cm is rotating with angular speed 4.75 rad/s. A second, aluminum disc of the same diameter but with mass 527 g and rotating with angular speed -0.07 rad/s is dropped on to the steel disc and both come to a common angular speed. What is this final angular speed?arrow_forwardA massless string is wrapped around a solid 7.6-kg cylinder of diameter 24 cm that can rotate freely withoutfriction about an axis through its center. A stone is tied to the loose end of the string. When the stone isreleased from rest, the cylinder turns without the string slipping. If the cylinder has an angular velocity of26 rad/s after 1.4 s, what is the mass of the stone? Through how many revolutions does the cylinder turn inthis time?arrow_forwardConsider a person who is sitting on a frictionless rotating stool. The person initially has his arms outstretched and is rotating with an angular speed of 5.0 rad/s. He then pulls his arms close to his body, thus reducing his moment of inertia to 80% of the initial one. What is his final angular speed?arrow_forward
- A car with tires whose radius is 32 cm is traveling along a highway at 24.5 m/s. The mass of the tire is equal to 12.0 kg and it's mass is distributed around the outer diameter so that it's moment of inertia is I=MR². (a) What is the angular velocity of the tires? (b) Compute the rotational kinetic energy of the tire (c) Compute the total kinetic energy of the tire (d) How many revolutions will the tires make in six minutes? (e) Consider now that the car brakes with an angular acceleration of -25.5 rad/sec^2 and comes to a stop; how many revolutions will the tires have made between the time the brakes are applied and when the car stops?arrow_forwardA disk of mass M is spinning freely at 4.77 rad/s when a second identical disk, initially not spinning, is dropped onto it so that their axes coincide. In a short time the two disks are corotating. (a)What is the angular speed of the new system (in rad/s)? (b) If a third such disk is dropped on the first two, find the final angular speed of the system (in rad/s).arrow_forwardA baseball has a mass of 0.15 kg and radius 3.7 cm. In a baseball game, a pitcher throws the ball with a substantial spin so that it moves with an angular speed of 41 rad/s and a linear speed of 34 m/s. Assuming the baseball to be a uniform solid sphere, determine the rotational and translational kinetic energies of the ball in joules. KErotational = KE translational =arrow_forward
- A wheel of radius 0.35 m rotates in a clockwise sense about a fixed axle with negligible friction at an initial angular speed of 2.6 rad/s. The wheel's mass of 17 kg is concentrated in its rim. You apply a clockwise torque to the rotating wheel by pushing on the rim tangentially with a constant force of 22 N. Find the wheels angular speed, in radians per second, 0.085 seconds after you start pushing on the rim.arrow_forwardA mountain biker takes a jump in a race and goes airborne. The mountain bike is traveling at 12.5 m/s before it goes airborne. If the mass of the front wheel on the bike is 950 g and has radius 30 cm, what is the angular momentum (in kg · m/s) of the spinning wheel about its axis in the air the moment the bike leaves the ground? (Assume the wheel can be approximated by a hoop rotating about its center of mass that rolls without slipping before the jump. Enter the magnitude.) kg · m2/sarrow_forwardA uniform spherical shell of mass M = 6.0 kg and radius R = 18.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 3.60×10-3 kg m2 and radius r = 6.0 cm, and its attached to a small object of mass m = 4.0 kg. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h = 1.1 m from rest: Use work - energy considerationsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON