Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
A 10 ft length of pipe with an inner radius of 1 in and outer radius of 1.25 in has an outer surface temperature of 250 F. The heat transfer rate is 30,000 BTU/hr. Find the interior surface temperature. Assume k = 25 BTU/hr-ft-F.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The wall of a furnace has an inner temperature of 500 F. The wall has a thickness of 2 inches and has a thermal conductivity of 0.02 Btu/(h·ft·F). On the outside, air at 30 F flows over the 10 ft x 10 ft wall at a speed of 10 ft/s. Determine the rate of heat loss from the furnace to the environment. Use thermal resistance to solvearrow_forwardA wood stove heats a small cabin with the following dimensions 8 m x 6 m x 3 m (length x width x height) to 25°C. Of the heat generated by burning wood, 60% is lost up the chimney. The cabin also loses heat through walls, ceiling and floor. Assume that all sides of the house except the floor are insulated with a 10 cm thick polyethylene foam layer having a thermal conductivity htc = 0.038 W/(m•°C). The heat loss through the floor is 1/5 of the heat loss through the ceiling. Outside air is at -5°C. a) How much heat is lost in total from the ceiling, walls, and floor? b) How many kg of wood per hour is needed as fuel for the cabin to maintain its temperature if heat value of wood is AH = 18,000 kJ/kg?arrow_forward= 31. A circular fin of diameter D = 0.25 inches and length L 4 inches transfers heat at a rate Q = 5.66 Btu/hr to air. The convective heat transfer coefficient is 3.62 Btu/hr-ft²- °F and the temperature difference between the fin-wall interface and the air is 100 °F. What is the thermal conductivity of the fin? What is the temperature of the fin tip?arrow_forward
- Calculate the overall heat transfer coefficient of the steel pipe based on the inner surface. The inner diameter of the pipe is 12.7 cm, and the thickness of the pipe is 2.4 cm. The convection heat transfer coefficient in the pipe is 350 W / (m² ° C), the convective heat transfer coefficient outside the pipe is 25 W / (m² ° C), the thermal conductivity of the steel pipe is 15 W / (m ° C). If the pipe is used to deliver steam at 110 ° C and the ambient temperature is 20 ° C, determine the heat transfer rate of the pipe per meter. q = Watt / marrow_forwardIf hand written i'll upvote otherwise downvote?...arrow_forwardAn electric generator at a power plant produces energy bypassing super heated steam from the high temperature container reservoir through a pipe connected to a series of fans and then into a low temperature reservoir. As the theme passes across the blades of the fan some of the heat energy of this steam is transferred into the mechanical energy which turn the fence which intern are connected to a generator which intern converts the mechanical energy into electrical energy. If the high temperature steam has a temperature of 362.3 K and the low temperature reservoir has a temperature of 134.9 K what is the carnot Efficiency of this process?arrow_forward
- can you please please work it all outarrow_forwardSteam condenses at 100°C on the outer surface of a pipe with a thermal conductivity of 180 J/ms°C. The surface heat transfer coefficient of the water flowing in the pipe is 4000 J/m²s°C, and the heat transfer coefficient created by the steam condensing outside is 10000 J/m²s°C. The length of the pipe is 5 m and the thread diameter is 25 mm. Since the pipe thickness is 1 mm, calculate the total heat transfer coefficient and the rate of heat transfer from the condensed steam to the water at 15 °Carrow_forwardPlease include a fbd of the problemarrow_forward
- A w=40 mm square computer CPU is air cooled with fans shown in the figure below. The surrounding air in the case has convection coefficient h = 100 W/m2⋅K and temperature T∞ = 30oC. If the aluminum heat sink (k = 230 W/m⋅K) on your computer has N = 20 exposed equally-spaced rectangular fins of thickness t =1 mm and length Lf = 15 mm: a) Calculate the overall efficiency ηo of the fins b) Given that the CPU is generating QCPU = 90 W, determine the temperature of the CPU, assuming the CPU is a uniform temperature and well-insulated on its sides. Ignore thermal contact resistance and fin array base resistancearrow_forwardA thick-walled cylindrical tubing of hard rubber (k=0.151 W/m*K) having an inside radius of 5 mm and an outside radius of 20 mm is being used as a temporary cooling coil in a bath. Ice water is flowing rapidly inside, and the inside wall temperature is 275 K. The outside surface temperature is 300 K. A total of 20 W must be removed from the bath by the cooling coil. How many meter of tubing are needed?arrow_forward(a) A length of brass piping is 30 m long at a temperature of 18°C. When hot water flows through it the temperature of the pipe rises to 70°C. Determine the length of the hot pipe if the coefficient of linear expansion for brass is 18 x 10-6 K-¹.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY