9. The turbine rotor of a ship has a mass of 20 tonnes and a radius of gyration of 0.75 m. Its speed is 2000 r.p.m. The ship pitches 6° above and below the horizontal position. One complete oscillation takes 18 seconds and the motion is simple harmonic. Calculate : 1. the maximum couple tending to shear the holding down bolts of the turbine, 2. the maximum angular acceleration of the ship during pitching, and 3. the direction in which the bow will tend to turn while rising, if the rotation of the rotor is clockwise when looking from rear.

icon
Related questions
Question
9.
The turbine rotor of a ship has a mass of 20 tonnes and a radius of gyration of 0.75 m. Its speed is 2000
r.p.m. The ship pitches 6° above and below the horizontal position. One complete oscillation takes 18
seconds and the motion is simple harmonic. Calculate :
1. the maximum couple tending to shear the holding down bolts of the turbine, 2. the maximum
angular acceleration of the ship during pitching, and 3. the direction in which the bow will tend to turn
while rising, if the rotation of the rotor is clockwise when looking from rear.
Transcribed Image Text:9. The turbine rotor of a ship has a mass of 20 tonnes and a radius of gyration of 0.75 m. Its speed is 2000 r.p.m. The ship pitches 6° above and below the horizontal position. One complete oscillation takes 18 seconds and the motion is simple harmonic. Calculate : 1. the maximum couple tending to shear the holding down bolts of the turbine, 2. the maximum angular acceleration of the ship during pitching, and 3. the direction in which the bow will tend to turn while rising, if the rotation of the rotor is clockwise when looking from rear.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer