+8x3 –7.8x4 = 24.1 7x1 –3.2x2 -8x3 -1.4x4 = -125 9.6x1 –8.8x2 +6x3 +0.3x4 = -23.2 2.7x1 –9.2x2 3.6x1 +0.7x2 –5.7x3 +8.6x4 = –-49.6 Coeficientes após escalonamento: x2 Eqı : -7.8 2.7 -9.2 8 24.1 Eq2 : Eq3 : Eq4 : Solução: -8,07835 -0,476100 x3 = 8,32058 X4 = 3,09169

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Apply the Gauss Elimination Method without pivoting to solve the linear system below. You must not change lines. Fill in the first table below with the coefficients and independent terms of the system obtained after all the scaling steps. Note that the table is already partially filled. The second table must be filled with the system solution. Perform calculations with 4 decimal places and rounding. Use comma as separator for fractional values ​​(Ex: 3.145 instead of 3.145).

+8x3 –7.8x4 = 24.1
721 -3.2а2 —843 — 1.424 3 —125
2.7x1 –9.2x2
9.6x1 -8.8x2 +6x3 +0.3x4 = -23.2
3.6x1 +0.7x2 –5.7x3 +8.6x4=-49.6
Coeficientes após escalonamento:
b
Eqı :
2.7
-9.2
8
-7.8
24.1
Eq2 :
Eqz :
Eq4 :
Solução:
-8,07835
X2 =
-0,476100
x3 =
8,32058
X4 =
3,09169
Transcribed Image Text:+8x3 –7.8x4 = 24.1 721 -3.2а2 —843 — 1.424 3 —125 2.7x1 –9.2x2 9.6x1 -8.8x2 +6x3 +0.3x4 = -23.2 3.6x1 +0.7x2 –5.7x3 +8.6x4=-49.6 Coeficientes após escalonamento: b Eqı : 2.7 -9.2 8 -7.8 24.1 Eq2 : Eqz : Eq4 : Solução: -8,07835 X2 = -0,476100 x3 = 8,32058 X4 = 3,09169
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,