7:49 PM Wed Apr 15 VPN 16% TA 3. Oil is leaking from a pipeline on the surface of a lake and forms an oil slick whose volume increases at a constant rate of 2000 cubic centimeters per minute. The oil slick takes the form of a right circular cylinder with both its radius and height changing with time. (Note: The volume V of a right circular cylinder with radius r and height h is given by V = arh.) (a) At the instant when the radius of the oil slick is 100 centimeters and the height is 0.5 centimeter, the radius is increasing at the rate of 2.5 centimeters per minute. At this instant, what is the rate of change of the height of the oil slick with respect to time, in centimeters per minute? (b) A recovery device arrives on the scene and begins removing oil. The rate at which oil is removed is R(1) = 400Jī cubic centimeters per minute, where t is the time in minutes since the device began working. Oil continues to leak at the rate of 2000 cubic centimeters per minute. Find the time 1 when the oil slick reaches its maximum volume. Justify your answer. 2 3

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
7:49 PM Wed Apr 15
VPN 16%
TA
3. Oil is leaking from a pipeline on the surface of a lake and forms an oil slick whose volume increases at a
constant rate of 2000 cubic centimeters per minute. The oil slick takes the form of a right circular cylinder
with both its radius and height changing with time. (Note: The volume V of a right circular cylinder with
radius r and height h is given by V = arh.)
(a) At the instant when the radius of the oil slick is 100 centimeters and the height is 0.5 centimeter, the radius is
increasing at the rate of 2.5 centimeters per minute. At this instant, what is the rate of change of the height of
the oil slick with respect to time, in centimeters per minute?
(b) A recovery device arrives on the scene and begins removing oil. The rate at which oil is removed is
R(1) = 400Jī cubic centimeters per minute, where t is the time in minutes since the device began working.
Oil continues to leak at the rate of 2000 cubic centimeters per minute. Find the time 1 when the oil slick
reaches its maximum volume. Justify your answer.
2
3
Transcribed Image Text:7:49 PM Wed Apr 15 VPN 16% TA 3. Oil is leaking from a pipeline on the surface of a lake and forms an oil slick whose volume increases at a constant rate of 2000 cubic centimeters per minute. The oil slick takes the form of a right circular cylinder with both its radius and height changing with time. (Note: The volume V of a right circular cylinder with radius r and height h is given by V = arh.) (a) At the instant when the radius of the oil slick is 100 centimeters and the height is 0.5 centimeter, the radius is increasing at the rate of 2.5 centimeters per minute. At this instant, what is the rate of change of the height of the oil slick with respect to time, in centimeters per minute? (b) A recovery device arrives on the scene and begins removing oil. The rate at which oil is removed is R(1) = 400Jī cubic centimeters per minute, where t is the time in minutes since the device began working. Oil continues to leak at the rate of 2000 cubic centimeters per minute. Find the time 1 when the oil slick reaches its maximum volume. Justify your answer. 2 3
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning