7.. Derive a first order formula to approximate f"(x) by using f (x – h), f(x) and f(x + 3h). Write the scheme explicitly and find the order of approximation. A.) f"(x) = La-h)+2{(x+3h}=fCx) _ 00a B.) f"(x) = 2/&-h)+{(x+3h)+f€z) • O(h) C) f"(x) = L«-h)-3f(x*ah)+2f(x) + O(h²) D.) f"(x) = 1&-k)+f(x+3h}=4/Cx) a E.) f"(x) = L«+3A)-[x=h)+2{(X) + O(h)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
7. . ) Derive a first order formula to approximate f"(x) by using f(x – h), f(x) and
f(x + 3h). Write the scheme explicitly and find the order of approximation.
A.) f"(x) = La-h)+2/(x+3h)=f(x).
2+0(h²)
B.) f"(x) = 2/x-h)+f(x+3h)+f(x) _ Oh)
C) f"(x) = Lx-h)-3/(x*ah)+2f(x) + O(h²).
D.) f"(x) = 3/x-h)+f(x+3h)=4[(x) + O(h)
S(x+3h)-1(x-h)+2/(x)
E.) f"(x) =
+ 0(h)
Transcribed Image Text:7. . ) Derive a first order formula to approximate f"(x) by using f(x – h), f(x) and f(x + 3h). Write the scheme explicitly and find the order of approximation. A.) f"(x) = La-h)+2/(x+3h)=f(x). 2+0(h²) B.) f"(x) = 2/x-h)+f(x+3h)+f(x) _ Oh) C) f"(x) = Lx-h)-3/(x*ah)+2f(x) + O(h²). D.) f"(x) = 3/x-h)+f(x+3h)=4[(x) + O(h) S(x+3h)-1(x-h)+2/(x) E.) f"(x) = + 0(h)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,