(7). In a gas turbine system air is taken into the compressor at 100kPa and 18°C. It is compressed through a compression ratio of 5:1 with an isentropic efficiency of 85%. The air passes to a combustion chamber where it is heated to 815°C by the addition of fuel. In the turbine it is expanded down to 100kPa with an isentropic efficiency of 88%. If the mass flowrate of the air is 4.5kg/s and the mass of fuel neglected, calculate: (a). the net power output of the turbine if it is coupled to the compressor (b). the plant's thermal efficiency (c). the mass of fuel burnt per hour (d). the air-fuel ratio The calorific value of the fuel is 43.3 MJ/kg

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
(7). In a gas turbine system air is taken into the compressor at 100kPa and 18°C.
It is compressed through a compression ratio of 5:1 with an isentropic
efficiency of 85%. The air passes to a combustion chamber where it is heated
to 815°C by the addition of fuel. In the turbine it is expanded down to
100kPa with an isentropic efficiency of 88%. If the mass flowrate of the air
is 4.5kg/s and the mass of fuel neglected, calculate:
(a). the net power output of the turbine if it is coupled to the
compressor
(b). the plant's thermal efficiency
(c). the mass of fuel burnt per hour
(d). the air-fuel ratio
The calorific value of the fuel is 43.3MJ/kg
Transcribed Image Text:(7). In a gas turbine system air is taken into the compressor at 100kPa and 18°C. It is compressed through a compression ratio of 5:1 with an isentropic efficiency of 85%. The air passes to a combustion chamber where it is heated to 815°C by the addition of fuel. In the turbine it is expanded down to 100kPa with an isentropic efficiency of 88%. If the mass flowrate of the air is 4.5kg/s and the mass of fuel neglected, calculate: (a). the net power output of the turbine if it is coupled to the compressor (b). the plant's thermal efficiency (c). the mass of fuel burnt per hour (d). the air-fuel ratio The calorific value of the fuel is 43.3MJ/kg
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Power Plant Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY