Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question
100%
In the image below.
**Problem 7: Finding the Unit Tangent Vector**

Objective: Find the unit tangent vector for the parameterized curve given by:
\[ \mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}, \quad 0 \le t < 2\pi \]

The goal of this problem is to determine the unit tangent vector for the specified parameterized curve. To do so, we will first differentiate \(\mathbf{r}(t)\) with respect to \(t\) to find the tangent vector, and then we will normalize this tangent vector to obtain the unit tangent vector.

**Steps:**
1. **Differentiate \(\mathbf{r}(t)\) with respect to \(t\)**:
   \[ \frac{d\mathbf{r}(t)}{dt} = \frac{d}{dt} (\cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}) \]
2. **Compute the derivative**:
   \[ \mathbf{r}'(t) = -\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k} \]
3. **Find the magnitude of \(\mathbf{r}'(t)\)**:
   \[ \|\mathbf{r}'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2 + (\cos t)^2} = \sqrt{\sin^2 t + \cos^2 t + \cos^2 t} = \sqrt{1 + \cos^2 t} \]
4. **Form the unit tangent vector \(\mathbf{T}(t)\)**:
   \[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{-\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k}}{\sqrt{1 + \cos^2 t}} \]

Thus, the unit tangent vector \(\mathbf{T}(t)\) for the given parameterized curve is:
\[ \mathbf{T}(t) = \frac
expand button
Transcribed Image Text:**Problem 7: Finding the Unit Tangent Vector** Objective: Find the unit tangent vector for the parameterized curve given by: \[ \mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}, \quad 0 \le t < 2\pi \] The goal of this problem is to determine the unit tangent vector for the specified parameterized curve. To do so, we will first differentiate \(\mathbf{r}(t)\) with respect to \(t\) to find the tangent vector, and then we will normalize this tangent vector to obtain the unit tangent vector. **Steps:** 1. **Differentiate \(\mathbf{r}(t)\) with respect to \(t\)**: \[ \frac{d\mathbf{r}(t)}{dt} = \frac{d}{dt} (\cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin t \, \mathbf{k}) \] 2. **Compute the derivative**: \[ \mathbf{r}'(t) = -\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k} \] 3. **Find the magnitude of \(\mathbf{r}'(t)\)**: \[ \|\mathbf{r}'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2 + (\cos t)^2} = \sqrt{\sin^2 t + \cos^2 t + \cos^2 t} = \sqrt{1 + \cos^2 t} \] 4. **Form the unit tangent vector \(\mathbf{T}(t)\)**: \[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{-\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + \cos t \, \mathbf{k}}{\sqrt{1 + \cos^2 t}} \] Thus, the unit tangent vector \(\mathbf{T}(t)\) for the given parameterized curve is: \[ \mathbf{T}(t) = \frac
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,